We previously demonstrated that ginsenoside Rg(3) (Rg(3)), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity (Kim, S., Kim, T., Ahn, K., Park, W.K., Nah, S.Y., Rhim, H., 2004. Ginsenoside Rg(3) antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem. Biophys. Res. Commun. 323, 416-424). Accumulating evidence suggests that homocysteine (HC), a metabolite of methionine, exerts its excitotoxicity through NMDA receptor activation. In the present study, we examined the neuroprotective effects of Rg(3) on HC-induced hippocampal excitotoxicity in vitro and in vivo. Our in vitro studies using rat cultured hippocampal neurons revealed that Rg(3) treatment significantly and dose-dependently inhibited HC-induced hippocampal cell death, with an EC(50) value of 28.7+/-7.5 muM. Rg(3) treatment not only significantly reduced HC-induced DNA damage, but also dose-dependently attenuated HC-induced caspase-3 activity in vitro. Our in vivo studies revealed that intracerebroventricular (i.c.v.) pre-administration of Rg(3) significantly and dose-dependently reduced i.c.v. HC-induced hippocampal damage in rats. To examine the mechanisms underlying the in vitro and in vivo neuroprotective effects of Rg(3) against HC-induced hippocampal excitotoxicity, we examined the effect of Rg(3) on HC-induced intracellular Ca(2+) elevations in cultured hippocampal cells and found that Rg(3) treatment dose-dependently inhibited HC-induced intracellular Ca(2+) elevation, with an IC(50) value of 41.5+/-17.5 muM. In addition, Rg(3) treatment dose-dependently inhibited HC-induced currents in Xenopus oocytes expressing the NMDA receptor, with an IC(50) of 47.3+/-14.2 muM. These results collectively indicate that Rg(3)-induced neuroprotection against HC in rat hippocampus might be achieved via inhibition of HC-mediated NMDA receptor activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2006.12.047DOI Listing

Publication Analysis

Top Keywords

hc-induced hippocampal
16
rg3 treatment
16
neuroprotective effects
12
rg3
12
ginsenoside rg3
12
cultured hippocampal
12
nmda receptor
12
rg3 hc-induced
12
vitro vivo
12
treatment dose-dependently
12

Similar Publications

Wilson disease (WD) is a severely autosomal genetic disorder triggered by dysregulated copper metabolism. Autophagy and apoptosis share common modulators that process cellular death. Emerging evidences suggest that Forkhead Box O1 over-expression (FoxO1-OE) aggravates abnormal autophagy and apoptosis to induce neuronal injury.

View Article and Find Full Text PDF

Objective: To study the protective effects and mechanisms of astragaloside (AST) and astragalus saponin I (ASI) on the memory impairment in senescent rats treated by glucocorticoid (GC).

Method: Y maze test was performed to determine the effects of AST and ASI on memory impairment of hydrocortisone(HC)-induced senescent rats. Using Ca2+ sensitive fluorescent indicator (Furo-2), free intracellular calcium concentration ([Ca2+]i) was measured by double wavelength fluorescence sepectrophotometer in thymocytes and hippocampal neurons induced dexamethasone (DEX).

View Article and Find Full Text PDF

We previously demonstrated that ginsenoside Rg(3) (Rg(3)), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity (Kim, S., Kim, T., Ahn, K.

View Article and Find Full Text PDF

Intracellular recordings and current and single-electrode voltage-clamp techniques were used to study the membrane responses of CA1 pyramidal neurons to bath application of l-homocysteic acid (l-HC) in the rat hippocampal slice preparation. In control artificial cerebrospinal fluid (ACSF), l-HC (25 - 250 microM) depolarized the membrane and induced a burst-like firing pattern. Both the membrane depolarization and the burst firing were blocked by the N-methyl-d-aspartic acid (NMDA) receptor antagonists d-(-)-2-amino-5-phosphonovaleric acid (AP-5, 50 microM), d-(-)-2-amino-7-phosphonoheptanoic acid (AP-7, 50 microM) and (+/-)-3-(2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP, 20 microM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!