Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural network architectures in solving classification problems. One of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the category proliferation problem. That is, Fuzzy ARTMAP has the tendency of increasing its network size, as it is confronted with more and more data, especially if the data are of the noisy and/or overlapping nature. To remedy this problem a number of researchers have designed modifications to the training phase of Fuzzy ARTMAP that had the beneficial effect of reducing this category proliferation. One of these modified Fuzzy ARTMAP architectures was the one proposed by Gomez-Sanchez, and his colleagues, referred to as Safe muARTMAP. In this paper we present reasonable analytical arguments that demonstrate of how we should choose the range of some of the Safe muARTMAP network parameters. Through a combination of these analytical arguments and experimentation we were able to identify good default parameter values for some of the Safe muARTMAP network parameters. This feat would allow one to save computations when a good performing Safe muARTMAP network is needed to be identified for a new classification problem. Furthermore, we performed an exhaustive experimentation to find the best Safe muARTMAP network for a variety of problems (simulated and real problems), and we compared it with other best performing ART networks, including other ART networks that claim to resolve the category proliferation problem in Fuzzy ARTMAP. These experimental results allow one to make appropriate statements regarding the pair-wise comparison of a number of ART networks (including Safe muARTMAP).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2006.11.008 | DOI Listing |
Neural Netw
March 2007
School of EECS, University of Central Florida, Orlando, FL 32816, United States.
Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural network architectures in solving classification problems. One of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the category proliferation problem. That is, Fuzzy ARTMAP has the tendency of increasing its network size, as it is confronted with more and more data, especially if the data are of the noisy and/or overlapping nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!