Alzheimer's disease (AD) is the major cause of dementia. Amyloid beta peptide (Abeta), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces Abeta levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu(2+)-bound CuBD reveals that the metal ligands are His147, His151, Tyr168 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu(+)-bound CuBD is almost identical to the Cu(2+)-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu(+), thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2006.12.041 | DOI Listing |
Eur J Med Res
December 2024
Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu, Zhengzhou, 450003, Henan, China.
Background: Nicastrin, a subunit of the γ-secretase complex, is encoded by the NCSTN gene and regulates notch signaling, it is involved in the pathogenesis of hidradenitis suppurativa (HS), Alzheimer disease (AD), and liver cancer. However, the animal models for studying HS are relatively scarce.
Methods: CRISPR/Cas-mediated genetic engineering was used to generate targeted knockout offspring mice (C57BL/6J).
Front Aging Neurosci
December 2024
Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
Alzheimer's disease (AD) is the most common form of dementia. Mutations in genes and precursors of amyloid (Aβ) are found in the familial form of the disease. This led to the evaluation of seven monoclonal antibodies against Aβ in subjects with AD, two of which were approved for use by the FDA.
View Article and Find Full Text PDFProtein Pept Lett
December 2024
Department of Pharm. Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD.
View Article and Find Full Text PDFCurr Alzheimer Res
December 2024
Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China.
Background: The potential relationship between Alzheimer's Disease (AD) and ferroptosis has received considerable attention, yet there is no comprehensive visualization analysis in this field. This study aimed to explore the research frontiers and hotspots through bibliometric analysis.
Methods: Literature related to AD and ferroptosis was collected from the Web of Science Core Collection.
J Neuroinflammation
December 2024
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
A high-fat diet (HFD) induces obesity and insulin resistance, which may exacerbate amyloid-β peptide (Aβ) pathology during Alzheimer's disease (AD) progression. Branched-chain amino acids (BCAAs) accumulate in obese or insulin-resistant patients and animal models. However, roles of accumulated BCAAs and their metabolites, branched-chain keto acids (BCKAs), in the HFD-induced deterioration of AD and the underlying mechanisms remains largely unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!