A hybrid approach to determining modification of clinical diagnoses.

AMIA Annu Symp Proc

Division of Biomedical Informatics, Mayo College of Medicine, Rochester, MN, USA.

Published: September 2007

Health care providers that use electronic medical records maintain an administrative database of diagnoses generated by physicians in the course of medical care delivery. This database is subsequently used for billing and reimbursement but can also be used to identify patients for clinical research. In this paper we present a hybrid rule-based and machine learning technique for automatic determination of whether a diagnosis is confirmed, probable or represents a history of a disorder. The rule-based stage was able to classify 86% of test instances with an accuracy of 98.7%. The machine learning stage was able to classify the remaining 14% of the test instances with an accuracy of 91.61% using Perceptron neural network as the classification algorithm. A comparison between Naïve Bayes and Perceptron is also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839348PMC

Publication Analysis

Top Keywords

machine learning
8
stage classify
8
test instances
8
instances accuracy
8
hybrid approach
4
approach determining
4
determining modification
4
modification clinical
4
clinical diagnoses
4
diagnoses health
4

Similar Publications

Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.

View Article and Find Full Text PDF

Aim: o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.

Material And Methods: ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.

Results: new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.

View Article and Find Full Text PDF

Background: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection after cytoreductive surgery (CRS) and HIPEC with splenectomy.

Methods: The study enrolled patients in the national TriNetX database and at the Johns Hopkins Hospital (JHH) who underwent splenectomy during CRS/HIPEC from 2010 to 2024.

View Article and Find Full Text PDF

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

Neuroinformatics

January 2025

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.

View Article and Find Full Text PDF

The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!