We examined the role of class IA PI3K in pre-TCR controlled beta-selection and TCR-controlled positive/negative selection in thymic development. Using mice deficient for p85alpha, a major regulatory subunit of the class IA PI3K family, the role of class IA PI3K in beta-selection was examined by injection of anti-CD3epsilon mAb into p85alpha(-/-)Rag-2(-/-) mice, which mimics pre-TCR signals. Transition of CD4(-)CD8(-) double-negative (DN) to CD4(+)CD8(+) double-positive (DP) thymocytes triggered by anti-CD3epsilon mAb was significantly impaired in p85alpha(-/-)Rag-2(-/-) compared with p85alpha(+/-)Rag-2(-/-) mice. Furthermore, DP cell numbers were lower in p85alpha(-/-)DO11.10/Rag-2(-/-) TCR-transgenic mice than in DO11.10/Rag-2(-/-) mice. In addition, inhibition by IC87114 of the major class IA PI3K catalytic subunit expressed in lymphocytes, p110delta, blocked transition of DN to DP cells in embryonic day 14.5 fetal thymic organ culture without affecting cell viability. In the absence of phosphatase and tensin homolog deleted on chromosome 10, where class IA PI3K signals would be amplified, the DN to DP transition was accelerated. In contrast, neither positive nor negative selection in Rag-2(-/-)TCR-transgenic mice was perturbed by the lack of p85alpha. These findings establish an important function of class IA PI3K in the pre-TCR-controlled developmental transition of DN to DP thymocytes.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.178.3.1349DOI Listing

Publication Analysis

Top Keywords

class pi3k
24
regulatory subunit
8
subunit class
8
role class
8
anti-cd3epsilon mab
8
class
7
pi3k
6
mice
6
p85alpha regulatory
4
class phosphoinositide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!