Yeast RNA-binding proteins Nrd1 and Nab3 direct transcription termination of sn/snoRNA transcripts, some mRNA transcripts, and a class of intergenic and anti-sense transcripts. Recognition of Nrd1- and Nab3-binding sites is a critical first step in the termination and subsequent processing or degradation of these transcripts. In this article, we describe the purification and characterization of an Nrd1-Nab3 heterodimer. This Nrd1-Nab3 complex binds specifically to RNA sequences derived from a snoRNA terminator. The relative binding to mutant terminators correlates with the in vivo termination efficiency of these mutations, indicating that the primary specificity determinant in nonpoly(A) termination is Nrd1-Nab3 binding. In addition, several snoRNA terminators contain multiple Nrd1- and Nab3-binding sites and we show that multiple heterodimers bind cooperatively to one of these terminators in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800511PMC
http://dx.doi.org/10.1261/rna.338407DOI Listing

Publication Analysis

Top Keywords

yeast rna-binding
8
rna-binding proteins
8
proteins nrd1
8
nrd1 nab3
8
nrd1- nab3-binding
8
nab3-binding sites
8
interaction yeast
4
nab3 rna
4
rna polymerase
4
polymerase terminator
4

Similar Publications

Aims: High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism.

View Article and Find Full Text PDF

ENY2 is an evolutionarily conserved multifunctional protein and is a member of several complexes that regulate various stages of gene expression. ENY2 is a subunit of the TREX-2 complex, which is necessary for the export of bulk mRNA from the nucleus to the cytoplasm through the nuclear pores in many eukaryotes. The wide range of ENY2 functions suggests that it can also associate with other protein factors or complexes.

View Article and Find Full Text PDF

As obligate intracellular parasites, viruses depend on host proteins and pathways for their multiplication. Among these host factors, specific nuclear proteins are involved in the life cycle of some cytoplasmic replicating RNA viruses, although their role in the viral cycle remains largely unknown. The polerovirus turnip yellows virus (TuYV) encodes a major coat protein (CP) and a 74 kDa protein known as the readthrough (RT) protein.

View Article and Find Full Text PDF
Article Synopsis
  • Translation initiation significantly influences gene expression in eukaryotes, with eukaryotic initiation factor 3 (eIF3) playing a key role in recruiting ribosomes.
  • This study examined how eIF3's binding to specific 5'-untranslated regions (5'-UTRs) of mRNAs leads to varying protein outputs, finding that it binds to a specific motif, AMAYAA, in some 5'-UTRs.
  • The study demonstrates that mRNAs bound by eIF3 have higher ribosome density and are preferentially translated during stress, highlighting eIF3's role as a novel translational enhancer.
View Article and Find Full Text PDF

DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!