The phenoxypropionic acid derivative 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469) and an analogue termed 2-{4-[(7-bromo-2-quinalinyl)oxy]phenoxy}propionic acid (SH80) can eradicate malignant cell types resistant to many common antitumor agents. Colony formation assays indicated that a 24 h exposure of L1210 cells to XK469 or SH80 inhibited clonogenic growth with CI(90) values of 10 and 13 micromol/L, respectively. This effect was associated with G(2)-M arrest and the absence of any detectable markers of apoptosis (i.e., plasma membrane blebbing, procaspase 3 activation, loss of mitochondrial membrane potential, and formation of condensed chromatin). Drug-treated cells increased in size and eventually exhibited the characteristics of autophagy (i.e., appearance of autophagosomes and conversion of microtubule-associated protein light chain 3-I to 3-II). The absence of apoptosis was not related to an inhibition of the apoptotic program. Cultures treated with XK469 or SH80 readily underwent apoptosis upon exposure to the Bcl-2/Bcl-x(L) antagonist ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate. Continued incubation of drug-treated cells led to a reciprocal loss of large autophagic cells and the appearance of smaller cells that could not be stained with Höechst dye HO33342, had a chaotic morphology, were trypan blue-permeable, and lacked mitochondrial membrane potential. L1210 cells cotreated with the phosphatidylinositol-3-kinase inhibitor wortmannin, or having reduced Atg7 protein content, underwent G(2)-M arrest, but not autophagy, following XK469 treatment. Hence, the therapeutic actions of XK469/SH80 with L1210 cultures reflect both the initiation of a cell cycle arrest as well as the initiation of autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877038 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-05-0386 | DOI Listing |
J Pharmacol Exp Ther
March 2009
Institute of Environmental Health Sciences, 2727 Second Ave., Room 4000, Wayne State University, Detroit, MI 48201, USA.
The therapeutic usefulness of the quinoxaline derivatives XK469 (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid) and SH80 (2-{4-[(7-bromo-2-quinolinyl)oxy]phenoxy}propionic acid) has been attributed to their abilities to induce G(2)/M arrest and apoptotic or autophagic cell death. Concentrations of XK469 or SH80 > or = 5 microM were cytostatic to cultures of the normal murine melanocyte cell line Melan-a. Higher concentrations caused dose-dependent cytotoxicity.
View Article and Find Full Text PDFMol Cancer Ther
January 2007
Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
The phenoxypropionic acid derivative 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469) and an analogue termed 2-{4-[(7-bromo-2-quinalinyl)oxy]phenoxy}propionic acid (SH80) can eradicate malignant cell types resistant to many common antitumor agents. Colony formation assays indicated that a 24 h exposure of L1210 cells to XK469 or SH80 inhibited clonogenic growth with CI(90) values of 10 and 13 micromol/L, respectively. This effect was associated with G(2)-M arrest and the absence of any detectable markers of apoptosis (i.
View Article and Find Full Text PDFBioorg Med Chem
April 2006
Department of Internal Medicine, Division of Hematology and Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
Conformational restriction of bioactive molecules offers the possibility of generating structures of increased potency. To this end, a synthesis has been achieved of (R,S)-2-[(8-chlorobenzofurano[2,3-b]quinolinyl)oxy]propionic acid (12a), a highly rigidified, polycyclic analog of 2-[4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy]propionic acid (2a, XK469). Efforts to effect the same synthesis of the corresponding 8-bromo-derivative led to a mixture of intermediate, 8-chloro (9a), and 8-bromo-2-hydroxybenzofurano[2,3-b]quinoline (9b), generated by halogen-exchange, via an aromatic S(RN)1(A(RN)1) reaction of precursor, 8b, with pyridine hydrochloride.
View Article and Find Full Text PDFBioorg Med Chem
June 2005
Department of Internal Medicine, Division of Hematology and Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
The criteria for the activity of 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469) and 2-{4-[(7-bromo-2-quinolinyl)oxy]phenoxy}propionic acid (SH80) against transplanted tumors in mice established in previous studies, require a (7-halo-2-quinoxalinoxy)- or a (7-halo-2-quinolinoxyl)-residue, respectively, bridged via a 1,4-OC(6)H(4)O-linker to C(2) of propionic acid. The present work demonstrates that substitution of fluorine at the 3-position of the 1,4-OC(6)H(4)O-linker of XK469 leads to a 10-fold reduction in activity, whereas the corresponding 2-fluoro analog proved to be 100-fold less active than XK469. Moreover, the latter tolerated substitution of but a single, additional methyl group to the 2-position of the propionic acid moiety, that is, the isobutyric acid analog, without loss of significant in vivo activity.
View Article and Find Full Text PDFBioorg Med Chem
February 2005
Department of Internal Medicine, Division of Hematology and Oncology, Wayne State University, School of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
2-{4-[(7-Chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (X469) and 2-{4-[(7-bromo-2-quinolinyl)oxy]phenoxy}propionic Acid (SH80) are among the most highly and broadly active antitumor agents to have been developed in our laboratories. However, the mechanism(s) of action of these agents remain to be elucidated, which prompted our continued endeavor to delineate a pharmacophoric pattern, from which a putative target might be deduced. Herein, we provide additional evidence that intact quinoxaline and quinoline rings in XK469 and SH80, respectively, are fundamental to the activities of these structures against transplanted tumors in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!