The CDC25 cell cycle regulators are promising targets for new pharmacologic approaches in cancer therapy. Inhibitory compounds such as BN82685 have proven to be effective in specifically targeting CDC25 in cultured cells and in inhibiting tumor cell growth. Here, we report that BN82685 impairs microtubule dynamic instability and alters microtubule organization and assembly at the centrosome in interphase cells. Treatment of mitotic cells with BN82685 delays mitotic spindle assembly, chromosome capture, and metaphase plate formation. Furthermore, we show that combining low concentrations of both BN82685 and paclitaxel inhibits the proliferation of HT29 human colon cancer cells. Our results show a role for CDC25 phosphatases in regulating microtubule dynamics throughout the cell cycle and suggest that combinations of CDC25 inhibitors with microtubule-targeting agents may be of therapeutic value.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-06-0299DOI Listing

Publication Analysis

Top Keywords

cdc25 phosphatases
8
microtubule dynamics
8
mitotic spindle
8
spindle assembly
8
cell cycle
8
cdc25
5
pharmacologic inhibition
4
inhibition cdc25
4
phosphatases impairs
4
impairs interphase
4

Similar Publications

Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.

View Article and Find Full Text PDF

Cell division cycle 25B (CDC25B) belongs to the CDC25 family of phosphatases that regulate cell cycle progression. CDC25B also contributes to tumor initiation and progression, but no connection between CDC25B levels and drug sensitivity in pancreatic cancer has been reported. Based on our finding that bromodomain and extraterminal domain (BET) inhibitors decrease levels of CDC25B, we aim to compare the sensitivity of models expressing contrasting levels of CDC25B to the BET inhibitor JQ1, in pancreatic cancer cell lines and in patient-derived xenograft (PDX) models of pancreatic ductal adenocarcinoma (PDAC) .

View Article and Find Full Text PDF

Mode of action exploration for prostate epithelial cell injury caused by bisphenol A.

Ecotoxicol Environ Saf

November 2024

Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China. Electronic address:

Bisphenol A (BPA) is a typical food chemical contaminant with various detrimental effects, especially on reproductive system. Male prostate damage is also one of its major adverse health effects, of which mode of action (MOA) remains unclear. This study aims to explore the MOA for prostate toxicity of BPA using human normal prostate epithelial cell RWPE-1 for 28-day human-relevant-level exposure.

View Article and Find Full Text PDF

The subcortical maternal complex modulates the cell cycle during early mammalian embryogenesis via 14-3-3.

Nat Commun

October 2024

Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.

The subcortical maternal complex (SCMC) is essential for safeguarding female fertility in mammals. Assembled in oocytes, the SCMC maintains the cleavage of early embryos, but the underlying mechanism remains unclear. Here, we report that 14-3-3, a multifunctional protein, is a component of the SCMC.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) is difficult to treat due to its aggressive nature and limited effective therapies, prompting the need for new treatments.
  • The study developed dual inhibitors targeting CDC25 and HDACs by combining specific molecular structures, showing that one compound, 18A, was particularly effective against TNBC cells while sparing non-cancerous cells.
  • 18A demonstrated strong cytotoxic effects, inhibited key cell cycle proteins, triggered DNA damage, and induced cell death, highlighting its potential as a promising targeted therapy for TNBC that requires further research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!