Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation.

Plant Physiol

Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas, 7600 Mar del Plata, Argentina.

Published: March 2007

Nitrogen (N) available to plants mostly originates from N(2) fixation carried out by prokaryotes. Certain cyanobacterial species contribute to this energetically expensive process related to carbon (C) metabolism. Several filamentous strains differentiate heterocysts, specialized N(2)-fixing cells. To understand how C and N metabolism are regulated in photodiazotrophically grown organisms, we investigated the role of sucrose (Suc) biosynthesis in N(2) fixation in Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120). The presence of two Suc-phosphate synthases (SPS), SPS-A and SPS-B, directly involved in Suc synthesis with different glucosyl donor specificity, seems to be important in the N(2)-fixing filament. Measurement of enzyme activity and polypeptide levels plus reverse transcription-polymerase chain reaction experiments showed that total SPS expression is greater in cells grown in N(2) versus combined N conditions. Only SPS-B, however, was seen to be active in the heterocyst, as confirmed by analysis of green fluorescent protein reporters. SPS-B gene expression is likely controlled at the transcriptional initiation level, probably in relation to a global N regulator. Metabolic control analysis indicated that the metabolism of glycogen and Suc is likely interconnected in N(2)-fixing filaments. These findings suggest that N(2) fixation may be spatially compatible with Suc synthesis and support the role of the disaccharide as an intermediate in the reduced C flux in heterocyst-forming cyanobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820908PMC
http://dx.doi.org/10.1104/pp.106.091736DOI Listing

Publication Analysis

Top Keywords

pcc 7120
12
anabaena pcc
8
suc synthesis
8
carbon cycling
4
cycling anabaena
4
7120 sucrose
4
sucrose synthesis
4
synthesis heterocysts
4
heterocysts role
4
role nitrogen
4

Similar Publications

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

Enhanced cyanophycin accumulation in diazotrophic cyanobacterium through random mutagenesis and tailored selection under varying phosphorus availability.

Bioresour Technol

December 2024

Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:

This study explored a sustainable alternative to the Haber-Bosch process by enhancing the production of the nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC 7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.

View Article and Find Full Text PDF

R-DeeP/TripepSVM identifies the RNA-binding OB-fold-like protein PatR as regulator of heterocyst patterning.

Nucleic Acids Res

December 2024

Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.

RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far.

View Article and Find Full Text PDF

All1750 of Anabaena PCC 7120 encodes a novel NAD-dependent amine dehydrogenase having broad substrate range.

Int J Biol Macromol

December 2024

Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120.

View Article and Find Full Text PDF

ThyD Is a Thylakoid Membrane Protein Influencing Cell Division and Acclimation to High Light in the Multicellular Cyanobacterium Anabaena sp. Strain PCC 7120.

Mol Microbiol

January 2025

Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.

Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!