Purpose: To examine the effects of fluctuating oxygen levels on the hypoxic cytotoxin tirapazamine (TPZ) using theoretical predictions.
Methods And Materials: Tirapazamine's pharmacokinetic and pharmacodynamic oxygen dependence has previously been characterized in vitro. Here, a one-dimensional theoretical model was used to examine the effects of fluctuating hypoxia on metabolized TPZ concentration, assuming sinusoidally fluctuating oxygen levels. TPZ concentration is changing according to published experimental data. Simulations of experimentally observed time-courses of perivascular pO2 were also conducted.
Results: The predicted pharmacodynamic effect of TPZ was increased with fluctuating (vs. constant) hypoxia at all frequencies (1-30 min period) and all amplitudes (1-15 mm Hg). Additionally, fluctuating oxygen resulted in more metabolized TPZ near the oxygen source as compared with the steady-state condition of the same overall average pO2.
Conclusions: Fluctuating pO2 reduced the concentration of metabolized TPZ at distances farther from the source, thereby limiting its ability to reach and kill the most hypoxic cells. These results suggest that the kinetics of fluctuating oxygenation should be taken into account when considering drug designs that involve oxygen-sensitive agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2006.10.002 | DOI Listing |
Phys Rev Lett
December 2024
Laboratoire PHENIX, Sorbonne Université, CNRS, (Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux), 4 Place Jussieu, 75005 Paris, France.
In recent years, the theoretical description of electrical noise and fluctuation-induced effects in electrolytes has gained renewed interest, enabled by stochastic field theories like stochastic density functional theory (SDFT). Such models, however, treat solvents implicitly, ignoring their generally polar nature. In the present study, starting from microscopic principles, we derive a fully explicit SDFT theory that applies to ions in a polar solvent.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.
Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India.
Plant-associated microbiome plays important role in maintaining overall health of the host plant. Xanthium strumarium displaying resilience to various environmental fluctuations may harbor some bacterial isolates which can help this plant to grow worldwide. The present study aims to isolate endophytic and rhizospheric bacteria from X.
View Article and Find Full Text PDFJ Atten Disord
January 2025
University of Amsterdam, The Netherlands.
Objective: Stimulant medications are the primary pharmacological intervention for ADHD, yet our understanding of how sex and gender impact stimulant treatment outcomes remains limited. Clinical guidelines do not differ for female and male individuals despite possible sex and gender-related differences in effectiveness, adverse events, and pharmacokinetics. This theoretical framework identifies five key knowledge gaps relating to sex and gender effects in stimulant treatment.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!