The discovery of metabolic and molecular markers that help improving the detection and diagnosis of breast cancer is an important goal to be achieved. A high composite-choline signal in magnetic resonance spectra of breast lesions has been demonstrated to improve the accuracy of breast cancer diagnosis. In the present study we revealed the principal molecular and biochemical steps associated with the induction of choline metabolism and phosphocholine accumulation in human breast cancer cell-lines in comparison with normal human mammary epithelial cells. We found upregulation of the expression levels of specific choline transporters: organic cation transporter-2 and choline high affinity transporter-1, as well as of the enzyme choline kinase alpha in the cancerous cells in comparison with that in the normal mammary epithelial cells. The expression levels of choline transporter like-1, organic cation transporter-1 and choline kinase beta were similar in normal and cancerous cells. We further showed that choline transport rates and choline kinase activity indeed increased by several fold in the cancer cells leading to the elevation of phosphocholine. The results strongly suggest that phosphocholine can serve as a biomarker of breast cancer reflecting upregulation of specific choline transporters and choline kinase genes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.22293DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
choline kinase
16
choline
10
biomarker breast
8
molecular biochemical
8
comparison normal
8
mammary epithelial
8
epithelial cells
8
expression levels
8
specific choline
8

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!