An attenuated strain of Salmonella typhimurium has been tested in animals and clinically as an anticancer agent due to its in vivo tumor-targeting and tumoricidal properties. We exploited a genetically-engineered S. typhimurium harboring Flt3 Ligand (Flt3L) expression vectors as a tumoricidal agent to enhance its therapeutic efficacy. Flt3L showed tumoricidal effects when expressed in tumor cells in vitro. When melanoma-bearing mice were treated locally with Salmonella, S. typhimurim with Flt3L expression vectors inhibited tumor growth more than Salmonella controls (50% vs. 0% in tumor regression rates). Moreover, it prolonged survivals of animals without induction of memory antitumor protective responses to a parental tumor re-challenge (50% vs. 0% in survival rates). These results suggest that a genetically engineered S. typhimurium with Flt3L expression vectors has the potential to be applicable as a safer and more effective tumor-targeting and tumoricidal agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-006-9270-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!