We investigated the role of limitations in aerobic metabolism, glycolysis, and membrane excitability for development of high-frequency fatigue in isolated rat soleus muscle. Muscles mounted on force transducers were incubated in buffer bubbled with 5% CO(2) and either 95% O(2) (oxygenated) or 95% N(2) (anoxic) and stimulated at 60 Hz continuously for 30-120 s or intermittently for 120 s. Cyanide (2 mM) and 2-deoxyglucose (10 mM) were used to inhibit aerobic metabolism and both glycolysis and aerobic metabolism, respectively. Excitability was reduced by carbacholine (10 microM), a nicotinic ACh receptor agonist, or ouabain (10 microM), an Na(+)-K(+) pump inhibitor. Membrane excitability was measured by recording M waves. Intracellular Na(+) and K(+) contents and membrane potentials were measured by flame photometry and microelectrodes, respectively. During 120 s of continuous stimulation, oxygenated and anoxic muscles showed the same force loss. In oxygenated muscles, cyanide did not alter force loss for up to 90 s, whereas 2-deoxyglucose increased force loss (by 19-69%; P < 0.01) from 14 s of stimulation. In oxygenated muscles, 60 s of stimulation reduced force, M wave area, and amplitude by 70-90% (P < 0.001). Carbacholine or ouabain increased intracellular Na(+) content (P < 0.001), induced a 7- to 8-mV membrane depolarization (P < 0.001), and accelerated the rate of force loss (by 250-414%) during 30 s of stimulation (P < 0.001). Similar effects were seen with intermittent stimulation. In conclusion, limitations in glycolysis and subsequently also in aerobic metabolism, as well as membrane excitability but not aerobic metabolism alone, appear to play an important role in the development of high-frequency fatigue in isolated rat soleus muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00714.2006DOI Listing

Publication Analysis

Top Keywords

aerobic metabolism
24
membrane excitability
16
force loss
16
metabolism glycolysis
12
development high-frequency
12
high-frequency fatigue
12
fatigue isolated
12
isolated rat
12
rat soleus
12
soleus muscle
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!