We hypothesized that the function of both sinusoidal and canalicular transporters importantly controls the concentrations of organic anions within normal hepatocytes. Consequently, we investigated how acute transport regulation of the sinusoidal organic anion transporting polypeptides (Oatps) and the canalicular multidrug resistance associated protein 2 (Mrp(2)) determines the hepatic concentrations of the organic anion gadolinium benzyloxypropionictetraacetate (BOPTA) in rat livers. Livers were perfused with labeled BOPTA in different experimental settings that modify the function of Oatps and Mrp(2) through the protein kinase C (PKC) pathway. Intrahepatic concentrations were continuously measured with a gamma probe placed above rat livers. Labeled BOPTA was also measured in perfusate and bile. We showed that when the function of Oatps and Mrp(2) is modified in such a way that BOPTA entry and exit are similarly decreased, concentrations of organic anions within hepatocytes remain unaltered. When exit through Mrp(2) is abolished, hepatic concentrations are high if entry through Oatps is only slightly decreased (livers without Mrp(2) expression) or low if BOPTA uptake is more importantly decreased (livers perfused with a PKC activator). These results highlight that the function of both sinusoidal and canalicular transporters is important to determine the concentration of organic anions within hepatocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.106.030759DOI Listing

Publication Analysis

Top Keywords

organic anions
16
function sinusoidal
12
sinusoidal canalicular
12
canalicular transporters
12
anions hepatocytes
12
concentrations organic
12
concentration organic
8
organic anion
8
hepatic concentrations
8
rat livers
8

Similar Publications

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

The Electrochemical Iodination of Electron-Deficient Arenes.

Angew Chem Int Ed Engl

January 2025

Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.

The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.

View Article and Find Full Text PDF

Bile-Derived cfDNA of Syncytin-1 and SLC7A11 as a Potential Molecular Marker for Early Diagnosis of Cholangiocarcinoma.

J Gastrointest Cancer

January 2025

Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China.

Purpose: Liquid biopsy technology has received widespread attention in the early diagnosis of cholangiocarcinoma (CCA).

Methods: We collected bile samples from 48 patients with CCA and 48 patients with gallstones at Shandong Provincial third Hospital. We quantified bile circulating free DNA (cfDNA) of syncytin-1 and SLC7A11, calculated the correlation between syncytin-1 and SLC7A11 expression and clinical parameters by Spearman rank correlation, plotted Receiver Operating Characteristic (ROC) curves, and compared the Area Under Curve (AUC) values to explored early diagnostic utility in patients.

View Article and Find Full Text PDF

The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!