Objective: Genistein, a naturally occurring isoflavenoid abundant in soy products, has anti-neoplastic activity in multiple tumor types. There are several mechanisms reported for genistein's anti-neoplastic activity. In the present study, we studied the mechanism of genistein-induced cell death in ovarian cancer cells.
Methods: The effect of genistein on the induction of apoptosis, autophagy, and inhibition of glucose uptake in ovarian cancer cells was determined. The effect of genistein on the expression of phosphorylated Akt was determined by immunoblotting.
Results: Genistein is cytotoxic to ovarian cancer cells. The mechanism of genistein-induced cell death includes both apoptosis and autophagy. Because autophagy is typically an adaptive response to nutrient starvation, we hypothesized that genistein could induce a starvation-like signaling response. We show here that genistein treatment results in caspase-independent cell death with hallmarks of autophagy. Genistein treatment dramatically inhibits glucose uptake in ovarian cancer cells, and methyl pyruvate, a cell-permeable 3-carbon substrate for oxidative phosphorylation and fatty acid synthesis, rescues cells from genistein-induced autophagy. In addition, genistein treatment results in reduced levels of phosphorylated Akt, which may contribute towards a mechanism to limit glucose utilization.
Conclusions: Most conventional chemotherapeutic agents induce apoptotic cell death. Because genistein can induce both apoptotic and autophagic cell death, it has the potential to circumvent chemoresistance due to alterations in apoptotic signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygyno.2006.11.009 | DOI Listing |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Oncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFSci Rep
January 2025
Chair of Obstetrics Development, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland.
The aim of the study is to analyze the relationship between personality traits of women with hereditary predisposition to breast/ovarian cancer and their obstetric history and cancer-preventive behaviors. A total of 357 women, participants of 'The National Program for Families With Genetic/Familial High Risk for Cancer', were included in the study. The Neo Five-Factor Inventory (NEO-FFI) and a standardized original questionnaire designed for the purpose of the study were used.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Eötvös Loránd University, Department of Physics of Complex Systems, Budapest, Hungary.
Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!