Diesel exhaust particles induce endothelial dysfunction in apoE-/- mice.

Toxicol Appl Pharmacol

Department of Environmental and Occupational Health, Institute of Public Health, University of Copenhagen, Øster Farimagsgade 5, Building 5B, 2nd Floor, 1014 Copenhagen K, Denmark.

Published: February 2007

Background: Particulate air pollution can aggravate cardiovascular disease by mechanisms suggested to involve translocation of particles to the bloodstream and impairment of endothelial function, possibly dependent on present atherosclerosis.

Aim: We investigated the effects of exposure to diesel exhaust particles (DEP) in vivo and ex vivo on vasomotor functions in aorta from apoE(-/-) mice with slight atherosclerosis and from normal apoE(+/+) mice.

Methods: DEP 0, 0.5 or 5 mg/kg bodyweight in saline was administered i.p. The mice were sacrificed 1 h later and aorta ring segments were mounted on wire myographs. Segments from unexposed mice were also incubated ex vivo with 0, 10 and 100 microg DEP/ml before measurement of vasomotor functions.

Results: Exposure to 0.5 mg/kg DEP in vivo caused a decrease in the endothelium-dependent acetylcholine elicited vasorelaxation in apoE(-/-) mice, whereas the response was enhanced in apoE(+/+) mice. No significant change was observed after administration of 5 mg/kg DEP. In vivo DEP exposure did not affect constriction induced by K(+) or phenylephrine. In vitro exposure to 100 microg DEP/ml enhanced acetylcholine-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilation induced by sodium nitroprusside was not affected by any DEP exposure.

Conclusion: Exposure to DEP has acute effect on vascular functions. Endothelial dysfunction possibly due to decreased NO production as suggested by decreased acetylcholine-induced vasorelaxation and unchanged sodium nitroprusside response can be induced by DEP in vivo only in vessels of mice with some atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2006.10.032DOI Listing

Publication Analysis

Top Keywords

dep vivo
16
apoe-/- mice
12
diesel exhaust
8
exhaust particles
8
endothelial dysfunction
8
dep
8
100 microg
8
microg dep/ml
8
mg/kg dep
8
sodium nitroprusside
8

Similar Publications

Anti-IL-5 treatment, but not neutrophil interference, attenuates inflammation in a mixed granulocytic asthma mouse model, elicited by air pollution.

Respir Res

January 2025

Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Medical Research Building (MRB) II, Ghent University Hospital, 2 Floor, Corneel Heymanslaan 10, 9000, Ghent, Belgium.

Introduction: Diesel exhaust particles (DEP) have been proven to aggravate asthma pathogenesis. We previously demonstrated that concurrent exposure to house dust mite (HDM) and DEP in mice increases both eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) and also results in higher levels of neutrophil-recruiting chemokines and neutrophil extracellular trap (NET) formation compared to sole HDM, sole DEP or saline exposure. We aimed to evaluate whether treatment with anti-IL-5 can alleviate the asthmatic features in this mixed granulocytic asthma model.

View Article and Find Full Text PDF

The increasing use of recreational nitrous oxide ([Formula: see text]O) in the Netherlands and its link to traffic accidents highlights the need for reliable detection methods for law enforcement. This study focused on ex vivo detection of [Formula: see text]O in exhaled breath and examining its persistence in the human body. Firstly, a low-cost portable infrared based detector was selected and validated to detect [Formula: see text]O in air.

View Article and Find Full Text PDF

Background: Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns.

Methods: Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Protective potentials of extracted compound SILIBININ from milk thistle on type-2 diabetes mellitus and diesel exhaust particle (DEP) toxicity in experimental rats.

J Nutr Biochem

December 2024

Molecular Biology Unit, Department of Biochesmistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria. Electronic address:

The combustion of diesel in engines contributes polycyclic aromatic hydrocarbons to Diesel Particulate Matter (DPM) present in the atmosphere, therefore causing toxic mitigating consequences by eliciting oxidative modulation. Currently, type 2 diabetes mellitus is reported as a global menace, causing about 1.5 million deaths in 2019 and contributing to about 48% of related deaths among the populace aged below 70 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!