Previous studies from our laboratory have shown that insect hunting is associated with a distinct Fos up-regulation in the ventrolateral caudoputamen at intermediate rostro-caudal levels. It is largely known that ventrolateral striatum participates in the control of orofacial movements and forepaw usage accompanying feeding behavior, but there has been no study investigating its possible roles during predatory hunting. We have presently examined the role of the ventrolateral striatum during roach hunting by using the reversible blockade with lidocaine. Accordingly, non-treated and saline-treated animals performed the insect hunting quite well, displaying a rather stereotyped form of motor actions for chasing, capturing and killing the prey. During the bilateral blockade of the ventrolateral striatum, the animals showed a significantly longer latency to start hunting and to capture the first prey. The lidocaine-treated animals captured the prey by using mostly the mouth, with little forepaw assistance, and were less effective in capturing the roaches. Moreover, while handling the prey, animals with ventrolateral striatal inactivation kept biting several parts of the prey, but failed to deliver the killing bite to the head, leaving them alive and moving, more likely to escape. Overall, the present findings suggest that the ventrolateral striatum implements the stereotyped actions seen during prey capture and handling, and may influence the motivational drive to start attacking the roaches, as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2006.12.005 | DOI Listing |
Healthcare (Basel)
January 2025
Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal.
Background: Problematic social media (SM) use is a growing concern, particularly among adolescents who are drawn to these platforms for social interactions important to their age group. SM dependence is characterized by excessive, uncontrolled usage that impairs personal, social, and professional aspects. Despite the ongoing debate over recognizing SM addiction as a distinct diagnostic category, the impact of social feedback, particularly through the "like" button, on brain activity remains under scrutiny.
View Article and Find Full Text PDFNeuroscience
January 2025
Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, United States.
Deer mice provide a valuable naturally occurring animal model for investigating pathophysiological mechanisms underlying repetitive behaviors. Prior investigations using this model have identified abnormalities in the cortico-basal ganglia circuitry, including alterations within the indirect pathway and levels of endogenous opioids in the frontal cortex. In this study, the behaviors of n = 7 mice were quantified, and their brains were sectioned.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lin Cui Road, Beijing 100101, China.
Transl Psychiatry
October 2024
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Obsessive-compulsive disorder is a psychiatric disorder characterized by intrusive thoughts and repetitive behaviors. There are two prominent features: Harm Avoidance (HA) and Incompleteness (INC). Previous resting-state studies reported abnormally elevated connectivity between prefrontal cortical (PFC) and subcortical regions (thalamus, striatum) in OCD participants.
View Article and Find Full Text PDFNeuroimage
November 2024
Changping Laboratory, Beijing, China; Biomedical Pioneering Innovation Center, Peking University, Beijing, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!