The Agrobacterium rhizogenes oncogene rolB mimics the effects of auxin in that it increases the sensitivity of transformed cells to this hormone. Here we isolated a tobacco gene, ROX1, acting downstream of rolB. We show that plants with reduced levels of ROX1 mRNA, due to the expression of a 35S-driven ROX1-antisense construct, have flowers with stamens and pistils longer than normal because of an increased number of cells. Localized expression of rolB in anthers results in overexpression of ROX1 and reduced growth of stamens, due to a reduced number of cells. In addition, the longer stamens of antisense plants show a delayed xylem differentiation in the lateral bundles, primarily of the junction region between anther and filament, while the shorter stamens of ROX1-overexpressing plants show a precocious differentiation of xylem cells in the same tissues. Expression of ROX1 in stamens peaks at early stages of stamen growth, and ROX1 mRNA is localized mostly in anther procambial cells. The sequence of ROX1 shares a conserved element with a number of plant genes, including TED3, which is involved in xylem differentiation. These results point to a role of ROX1 in the balance between proliferation of procambial cells and xylem differentiation during stamen development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2006.02934.x | DOI Listing |
Ecol Appl
January 2025
Royal Botanic Gardens, Kew, Richmond, UK.
Determining the harvest location of timber is crucial to enforcing international regulations designed to protect natural resources and to tackle illegal logging and associated trade in forest products. Stable isotope ratio analysis (SIRA) can be used to verify claims of timber harvest location by matching levels of naturally occurring stable isotopes within wood tissue to location-specific ratios predicted from reference data ("isoscapes"). However, overly simple models for predicting isoscapes have so far limited the confidence in derived predictions of timber provenance.
View Article and Find Full Text PDF3 Biotech
February 2025
Junagadh Agricultural University, Junagadh, Gujarat 362001 India.
Unlabelled: is the causal agent of stem rot of many crops, a highly destructive disease of groundnut ( L). Based on evidence that many groundnut genotypes have an inherent ability to tolerate the pathogenicity of species, twenty-two genotypes of groundnut were screened against infection in sick plot field experiment; four genotypes, namely CS19, GG16, GG20 and TG37A, were selected as being the most tolerant, moderately tolerant, susceptible and highly susceptible to stem rot, respectively. Stem tissues (1cm from the collar region) from infected and healthy plants of four selected genotypes differing in susceptibility were examined using a scanning electron microscope (SEM).
View Article and Find Full Text PDFPlant Commun
January 2025
Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:
Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.
View Article and Find Full Text PDFPlant Cell
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
Tracheary elements (TEs) are vital in the transport of various substances and contribute to plant growth. The differentiation of TEs is complex and regulated by a variety of microRNAs (miRNAs). However, the dynamic changes in miRNAs during each stage of TE differentiation remain unclear, and the miRNA regulatory network is not yet complete.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!