The physical structure and polymorphism of nimodipine were studied by means of micro-Raman, WAXD, DSC, and SEM for cases of the pure drug and its solid dispersions in PEG 4000, prepared by both the hot-melt and solvent evaporation methods. The dissolution rates of nimodipine/PEG 4000 solid dispersions were also measured and discussed in terms of their physicochemical characteristics. Micro-Raman and WAXD revealed a significant amorphous portion of the drug in the samples prepared by the hot-melt method, and that saturation resulted in local crystallization of nimodipine forming, almost exclusively, modification I crystals (racemic compound). On the other hand, mainly modification II crystals (conglomerate) were observed in the solid dispersions prepared by the solvent evaporation method. However, in general, both drug forms may appear in the solid dispersions. SEM and HSM microscopy studies indicated that the drug particle size increased with drug content. The dissolution rates were substantially improved for nimodipine from its solid dispersions compared with the pure drug or physical mixtures. Among solid dispersions, those resulting from solvent coevaporation exhibited a little faster drug release at drug concentrations lower than 20 wt%. Drug amorphization is the main reason for this behavior. At higher drug content the dissolution rates became lower compared with the samples from melt, due to the drug crystallization in modification II, which results in higher crystallinity and increased particle size. Overall, the best results were found for low drug content, for which lower drug crystallinity and smaller particle size were observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751358PMC
http://dx.doi.org/10.1208/aapsj080471DOI Listing

Publication Analysis

Top Keywords

solid dispersions
28
particle size
16
drug
13
solvent evaporation
12
dissolution rates
12
drug content
12
dispersions prepared
8
micro-raman waxd
8
pure drug
8
prepared hot-melt
8

Similar Publications

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.

View Article and Find Full Text PDF

UiO-66 with missing cluster defects for high-efficient extraction and enrichment of benzoylurea insecticides.

J Chromatogr A

January 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:

The creation of defects in crystalline structures can tune metal-organic frameworks (MOFs) properties, such as improving their adsorptive and catalytic performance with producing more porosity and active sites. In this work, the bimetallic UiO-66 containing Zn and Zr was prepared. And then UiO-66 with missing cluster defects (UiO-66-1/3) were obtained by acid washing to remove the Zn nodes.

View Article and Find Full Text PDF

This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).

View Article and Find Full Text PDF

Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.

Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.

View Article and Find Full Text PDF

Experimental Investigation of Spray Drying Breakup Regimes of a PVP-VA 64 Solution Using High-Speed Imaging.

Pharmaceutics

December 2024

AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany.

Atomization plays a key role in spray drying, a process widely used in the pharmaceutical, chemical, biological, and food and beverage industries. In the pharmaceutical industry, spray drying is particularly important in the preparation of amorphous solid dispersions, which enhance the bioavailability of active pharmaceutical ingredients when mixed with a polymer. In this study, a 3D-printed adaptation of a commercial spray dryer nozzle (PHARMA-SD PSD-1, GEA Group AG) was used to investigate the atomization of PVP-VA 64 polymer solutions under varying flow conditions using high-speed diffuse back-illumination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!