Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper illustrates the use of combined neural network (CNN) models to guide model selection for diagnosis of internal carotid arterial (ICA) disorders. The ICA Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first level networks were implemented for the diagnosis of ICA disorders using the statistical features as inputs. To improve diagnostic accuracy, the second level network was trained using the outputs of the first level networks as input data. The CNN models achieved accuracy rates which were higher than that of the stand-alone neural network models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-006-9034-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!