High-temperature metal-organic magnets.

Nature

Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, British Columbia V8W 3V6, Canada.

Published: January 2007

For over two decades there have been intense efforts aimed at the development of alternatives to conventional magnets, particularly materials comprised in part or wholly of molecular components. Such alternatives offer the prospect of realizing magnets fabricated through controlled, low-temperature, solution-based chemistry, as opposed to high-temperature metallurgical routes, and also the possibility of tuning magnetic properties through synthesis. However, examples of magnetically ordered molecular materials at or near room temperature are extremely rare, and the properties of these materials are often capricious and difficult to reproduce. Here we present a versatile solution-based route to a new class of metal-organic materials exhibiting magnetic order well above room temperature. Reactions of the metal (M) precursor complex bis(1,5-cyclooctadiene)nickel with three different organics A-TCNE (tetracyanoethylene), TCNQ (7,7,8,8-tetracyanoquinodimethane) or DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone)--proceed via electron transfer from nickel to A and lead to materials containing Ni(II) ions and reduced forms of A in a 2:1 Ni:A ratio--that is, opposite to that of conventional (low Curie temperature) MA(2)-type magnets. These materials also contain oxygen-based species within their architectures. Magnetic characterization of the three compounds reveals spontaneous field-dependent magnetization and hysteresis at room temperature, with ordering temperatures well above ambient. The unusual stoichiometry and striking magnetic properties highlight these three compounds as members of a class of stable magnets that are at the interface between conventional inorganic magnets and genuine molecule-based magnets.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature05439DOI Listing

Publication Analysis

Top Keywords

room temperature
12
magnets materials
8
magnetic properties
8
three compounds
8
magnets
7
materials
6
high-temperature metal-organic
4
metal-organic magnets
4
magnets decades
4
decades intense
4

Similar Publications

Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.

View Article and Find Full Text PDF

Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.

View Article and Find Full Text PDF

As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.

View Article and Find Full Text PDF

In recent years, metal hydride research has become one of the driving forces of the high-pressure community, as it is believed to hold the key to superconductivity close to ambient temperature. While numerous novel metal hydride compounds have been reported and extensively investigated for their superconducting properties, little attention has been focused on the atomic and electronic states of hydrogen, the main ingredient in these novel compounds. Here, we present combined H- and La-NMR data on lanthanum superhydrides, LaH, (x = 10.

View Article and Find Full Text PDF

An effective approach for lignin-based bamboo adhesive preparation via swelling crosslinking.

Int J Biol Macromol

January 2025

Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China. Electronic address:

The preparation of lignin-based adhesives from sustainable lignin sources has garnered increasing attention from many researchers in recent years. However, developing high-performance and environmentally friendly lignin-based adhesives through a simple and efficient approach remains a significant challenge. In this study, aminated corn stover lignin (ACSL) was prepared by aminating corn stover lignin (CSL) using glutaraldehyde and ethylenediamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!