Prefrontal cortex (PFC) dopamine D1/5 receptors modulate long- and short-term neuronal plasticity that may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct postsynaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term potentiation of intrinsic excitability (LTP-IE). Here, the intracellular signals that mediate this D1/5 receptor-dependent LTP-IE were determined using whole cell current-clamp recordings in layer V/VI rat pyramidal neurons from PFC slices. After blockade of all major amino acid receptors (V(hold) = -65 mV) brief tetanic stimulation (20 Hz) of local afferents or application of the D1 agonist SKF81297 (0.2-50 microM) induced LTP-IE, as shown by a prolonged (>40 min) increase in depolarizing pulse-evoked spike firing. Pretreatment with the D1/5 antagonist SCH23390 (1 microM) blocked both the tetani- and D1/5 agonist-induced LTP-IE, suggesting a D1/5 receptor-mediated mechanism. The SKF81297-induced LTP-IE was significantly attenuated by Cd(2+), [Ca(2+)](i) chelation, by inhibition of phospholipase C, protein kinase-C, and Ca(2+)/calmodulin kinase-II, but not by inhibition of adenylate cyclase, protein kinase-A, MAP kinase, or L-type Ca(2+) channels. Thus this form of D1/5 receptor-mediated LTP-IE relied on Ca(2+) influx via non-L-type Ca(2+) channels, activation of PLC, intracellular Ca(2+) elevation, activation of Ca(2+)-dependent CaMKII, and PKC to mediate modulation of voltage-dependent ion channel(s). This D1/5 receptor-mediated modulation by PKC coexists with the previously described PKA-dependent modulation of K(+) and Ca(2+) currents to dynamically regulate overall excitability of PFC neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00317.2006DOI Listing

Publication Analysis

Top Keywords

d1/5 receptor-mediated
16
dopamine d1/5
8
long-term potentiation
8
potentiation intrinsic
8
intrinsic excitability
8
d1/5
8
spike firing
8
ca2+ channels
8
ltp-ie
6
ca2+
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!