Methylglyoxal inhibits the binding step of collagen phagocytosis.

J Biol Chem

Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario M5S 3E2, Canada.

Published: March 2007

Bacterial infection-induced fibrosis affects a wide variety of tissues, including the periodontium, but the mechanisms that dysregulate matrix turnover and mediate fibrosis are not defined. Since collagen turnover by phagocytosis is an important pathway for matrix remodeling, we studied the effect of the bacterial and eukaryotic cell metabolite, methylglyoxal (MGO), on the binding step of phagocytosis by periodontal fibroblasts. Type 1 collagen was treated with various concentrations of methylglyoxal, an important glucose metabolite that modifies Arg and Lys residues. The extent of MGO-induced modifications was authenticated by amino acid analysis, solubility, and cross-linking. Cells were incubated with fluorescent beads coated with collagen, and the percentage of phagocytic cells was estimated by flow cytometry. MGO inhibited collagen binding (20% of control for 10 mm MGO) in a time- and concentration-dependent manner. MGO-induced inhibition of binding was prevented by aminoguanidine, which blocks the formation of collagen cross-links. MGO reduced collagen binding strength and blocked intracellular calcium signaling. MGO modified the Arg residue in the critical alpha2beta1 integrin-binding recognition sequence of triple helical collagen peptides, whereas MGO-induced cross-linking of Lys residues played only a small role in binding inhibition. Thus, MGO modifications of Arg residues in collagen could be a key factor in the impaired degradation of collagen that promotes fibrosis in chronic infections, such as periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M609859200DOI Listing

Publication Analysis

Top Keywords

collagen
10
binding step
8
lys residues
8
collagen binding
8
binding
6
mgo
6
methylglyoxal inhibits
4
inhibits binding
4
step collagen
4
collagen phagocytosis
4

Similar Publications

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Tissue growth as a mechanism for collagen fiber alignment in articular cartilage.

Sci Rep

December 2024

Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, Eindhoven, 5600 MB, The Netherlands.

Articular cartilage is distinguished by the unique alignment of type II collagen, a feature crucial for its mechanical properties and function. This characteristic organization is established during postnatal development of the tissue, yet the underlying mechanisms remain poorly understood. In this study, a potential mechanism for type II collagen alignment by cartilage-specific growth from within the tissue was investigated.

View Article and Find Full Text PDF

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.

View Article and Find Full Text PDF

MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway.

Eur J Med Res

December 2024

Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.

Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.

Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!