Human noroviruses are the major cause of nonbacterial epidemic gastroenteritis worldwide. However, little is known regarding their pathogenesis or the immune responses that control them because until recently there has been no small animal model or cell culture system of norovirus infection. We recently reported the discovery of the first murine norovirus, murine norovirus 1 (MNV-1), and its cultivation in macrophages and dendritic cells in vitro. We further defined interferon receptors and the STAT-1 molecule as critical in both resistance to MNV-1-induced disease in vivo and control of virus growth in vitro. To date, neither histopathological changes upon infection nor viral replication in wild-type mice has been shown. Here we extend our studies to demonstrate that MNV-1 replicates and rapidly disseminates to various tissues in immunocompetent mice and that infection is restricted by STAT1-dependent interferon responses at the levels of viral replication and virus dissemination. Infection of wild-type mice is associated with histopathological alterations in the intestine (mild inflammation) and the spleen (red pulp hypertrophy and white pulp activation); viral dissemination to the spleen, liver, lung, and lymph nodes; and low-level persistent infection in the spleen. STAT-1 inhibits viral replication in the intestine, prevents virus-induced apoptosis of intestinal cells and splenocytes, and limits viral dissemination to peripheral tissues. These findings demonstrate that murine norovirus infection of wild-type mice is associated with initial enteric seeding and subsequent extraintestinal spread, and they provide mechanistic evidence of the role of STAT-1 in controlling clinical norovirus-induced disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866040 | PMC |
http://dx.doi.org/10.1128/JVI.02096-06 | DOI Listing |
Unlabelled: Caliciviruses are significant agricultural and human pathogens that are poorly understood due to the dearth of molecular tools, including reporter systems. We report the development of a stable, faithful, and robust luciferase-based reporter system for a model calicivirus, murine norovirus (MNoV). Genetic insertion of a HiBiT tag, an 11 amino acid fragment of nanolucifersase, at the junction of the nonstructural proteins NS4 and NS5 yields infectious virus.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).
View Article and Find Full Text PDFSci Total Environ
February 2025
Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Hepatitis E virus (HEV) is a zoonotic virus that infects humans when virus-containing pork products are consumed. This study aimed to explore MNV (murine norovirus) and HEV inactivation during cold smoking and ripening/fermentation treatments used for salami-like sausages (mettwurst). MNV inactivation was monitored in culture medium solution and in sausage while being subjected to a salami-like sausage manufacturing process.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!