Halobenzenes are ubiquitous environmental contaminants, which are hepatotoxic in both rodents and humans. The molecular mechanism of halobenzene hepatotoxicity was investigated using Quantitative structure-activity relationships (QSAR) and accelerated cytotoxicity mechanism screening (ACMS) techniques in rat and human hepatocytes. The usefulness of isolated hepatocytes for prediciting in vivo xenobiotic toxicity was reassessed by correlating the LC(50) of 12 halobenzene congeners in phenobarbital (PB) induced rat hepatocytes in vitro determined by ACMS to the hepatotoxicities reported in vivo in PB-induced male Sprague-Dawely (SD) rats. A high correlation (r(2)=0.90) confirmed the application of hepatocytes as a "gold standard" for toxicity testing in vitro. QSARs were derived to determine the physico-chemcial variables that govern halobenzene toxicity in PB-induced rat, normal rat and human hepatocytes. We found that toxicity in normal rat and normal human hepatocytes both strongly correlate with hydrophobicity (logP), ease of oxidation (E(HOMO), energy of the highest molecular orbital) and on the asymmetric charge distribution according to arrangement of halogen substituents (dipole moment, mu). This suggests that halobenzene interaction with cytochrome P450 for oxidation is the metabolic activating path for toxicity and is similar in both species. In PB-induced rat hepatocytes the QSAR derivation is changed, where halobenzene toxicity strongly correlates to logP and dipole moment, but not E(HOMO). The changed QSAR suggests that oxidation is no longer the rate-limiting step in the cytotoxic mechanism when CYP2B/3A levels are increased, confirming CYP450 oxidation as the metabolic activating step under normal conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2006.12.004DOI Listing

Publication Analysis

Top Keywords

human hepatocytes
16
rat human
12
structure-activity relationships
8
hepatocytes
8
rat hepatocytes
8
halobenzene toxicity
8
pb-induced rat
8
rat normal
8
normal rat
8
dipole moment
8

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).

View Article and Find Full Text PDF

RA-0002034 ( ) is a potent covalent inhibitor targeting the alphavirus nsP2 cysteine protease. The species-dependent pharmacokinetics and metabolism of were investigated to evaluate its therapeutic potential. Pharmacokinetic profiling revealed rapid clearance in mice, predominantly mediated by glutathione -transferase (GST)-catalyzed conjugation.

View Article and Find Full Text PDF

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!