Two H7721 human hepatocarcinoma cell lines showing moderate and high expression of alpha1,3-fucosyltransferase (FucT)-VII cDNA were established and designated FucTVII-M and FucTVII-H, respectively. In alpha1,3-FucT-VII-transfected cells, expression of insulin receptor (InR) alpha- and beta subunits and epidermal growth factor receptor (EGFR) on the cell surface and in cells, as well as the sialyl Lewis X (SLe(x), the product of alpha1,3-FucT-VII) content of the EGFR were unchanged. However the level of SLe(x) on the InR alpha subunit (InR-alpha) was increased dramatically. Tyrosine autophosphorylation of InR-beta , but not EGFR, was elevated. Concomitantly, tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1), Ser/Thr phosphorylation of protein kinase B (PKB; Akt), p42/44 mitogen-activated protein kinase (MAPK), MAPK kinase (MEK), and the protein of some other signaling molecules, such as phosphoinositide-dependent kinase-1 (PDK-1), novel protein kinase (PKN), c-Raf-1 and beta-catenin were also upregulated. The activities of PKB and transcription factor TCF were concomitantly stimulated. Upregulation of InR signaling molecules and their phosphorylation was correlated with the level of SLe(x) on InR-alpha and alpha1,3-FucT-VII expression in cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different levels of alpha1,3-FucT-VII expression were attenuated significantly by the inhibitor of InR tyrosine kinase and by the mAb to SLe(x). Furthermore, insulin-induced signaling was facilitated in alpha1,3-FucT-VII-transfected cells, particularly FucTVII-H. These findings provide strong evidence that alpha1,3-FucT-VII may affect insulin signaling by upregulating the phosphorylation and expression of some signaling molecules involved in the InR-signaling pathway. These effects are likely mediated by its product, SLe(x), on the glycans of the InR. This is the first study to report that changes in the terminal structure of glycans on a surface receptor can modify cell signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2006.05599.x | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
J Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFViruses
December 2024
Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!