Glycated DNA is considered to be a pathogenic factor for diabetes mellitus. Here we present a novel and preliminary study on normal and glycated (with fructose and glucose-6-phosphate as reducing sugars) human placenta DNA using agarose gel electrophoresis and photon correlation spectroscopy. The former is used to find structural alterations, while the latter is exploited to observe differences in the dynamics between normal (i.e., pure) and glycated DNA molecules. For scattering angles up to 90 degrees , we obtained a quasi-single-exponential relaxation process for the pure DNA, whereas at higher scattering angles the relaxation of pure DNA becomes broader with a stretching parameter beta approximately 0.6 at 130 degrees. Interestingly, for both the glycated DNAs stretched relaxation profiles and higher relaxation rates (Omega) are observed for all scattering angles. Moreover, a separate and very fast relaxation (e.g., relaxation time tau approximately 2 micros at 90 degrees ) can be noticed for both the glycated DNAs at all the studied scattering angles. Thus, the dramatic changes in the relaxation parameters (Omega, tau, and beta) of the glycated DNA show at the molecular level, for the first time, that the structure and dynamics of DNA are strongly affected by glycation. Implications of the results are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp063206gDOI Listing

Publication Analysis

Top Keywords

scattering angles
16
glycated dna
12
structure dynamics
8
dna
8
dynamics dna
8
pure dna
8
glycated dnas
8
relaxation
7
glycated
6
glycation structure
4

Similar Publications

This paper investigates the impact of treatment with chemical solutions of varying pH values on the micro-macroscopic damage in coal samples under load, employing a combination of Small Angle X-ray Scattering (SAXS) experiments and uniaxial compression tests. The experimental results show that soaking coal samples in NaOH, HCl, and distilled water for 7 days leads to reductions in uniaxial compressive strength by 39.19%, 47.

View Article and Find Full Text PDF

Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.

View Article and Find Full Text PDF

Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!