Porous calcium polyphosphate (CPP) has shown promise of tissue engineered implant application because of the biocompatibility and biodegradation. CPP with different polymerization degree were prepared by controlling the calcining time, and its polymerization degree could be calculated by developed method in this paper. Different crystal types CPP were prepared by quenching from the melt and crystallization of amorphous CPP. From the in vitro degradation, carried out in Tris-HCl buffer, the degradation velocity of CPP was controllable. The weight loss of CPP with different polymerization degrees and crystal types were different. With the increasing of polymerization degree, the weight loss during the degradation was decreasing, contrarily the strength of CPP was increasing. The amorphous CPP could degrade completely in 17 days while gamma-CPP do completely in 25 days. The degradation velocity beta-CPP and alpha-CPP was slower than gamma-CPP and the weight loss was about 12% and 5% respectively. The results of this study indicate that CPP have potential applications for bone tissue engineering as inorganic polymeric biomaterials.
Download full-text PDF |
Source |
---|
Vaccines (Basel)
November 2024
Laboratory of Proteolytic Enzyme Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia.
IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Leninskiy Prospekt 31, 119071 Moscow, Russia.
The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Glidewell Dental, Irvine, CA 92612, USA.
The aim of this study was to evaluate the mechanical properties and degree of conversion of a novel 3D-printing model resin and compare it to eight commercially available model resins. An experimental resin formulated by our proprietary resin technology along with DentaModel, NextDent 2, KeyModel Ultra, Rodin Model, Die and Model 2, DMR III, LCD Grey, and Grey Resin were used in this study. Parallelepiped specimens (2 × 2 × 25 mm, n = 5) were printed and measured for their flexural strength (FS), flexural modulus (FM), and modulus of resilience (MR) in accordance with ISO-4049.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia.
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. On the other hand, application of OTOA in PLA-based antibacterial materials is hindered by a lack of knowledge on kinetics of the OTOA release. In this work, the release of glycero-(9,10-trioxolane) trioleate (OTOA) from PLA films with 50% OTOA content was studied during incubation in normal saline solution, and for the first time, the kinetics of OTOA release from PLA film was evaluated.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.
In this work, three carboxymethyl starches (CMS) were obtained by the two-step reaction process of carboxymethylation with different degrees of substitution (0.16, 0.33, and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!