Digimouse: a 3D whole body mouse atlas from CT and cryosection data.

Phys Med Biol

Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564, USA.

Published: February 2007

We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006167PMC
http://dx.doi.org/10.1088/0031-9155/52/3/003DOI Listing

Publication Analysis

Top Keywords

x-ray cryosection
12
body mouse
8
mouse atlas
8
cryosection data
8
pet x-ray
8
cryosection images
8
values assigned
8
simulate realistic
8
realistic photon
8
photon attenuation
8

Similar Publications

Bone tissue, with its complex structure, often necessitates decalcification of the hard tissue for ex vivo morphological studies. The choice of a suitable decalcification method plays a crucial role in preserving desired features and ensuring compatibility with diverse imaging techniques. The search for a universal decalcification method that is suitable for a range of biophotonic analyses remains an ongoing challenge.

View Article and Find Full Text PDF

Background: Hematoxylin and eosin (H&E) staining is widely considered to be the gold-standard diagnostic tool for histopathology evaluation. However, the fatty nature of some tissue types, such as breast tissue, presents challenges with cryo-sectioning, often resulting in artifacts that can make histopathologic interpretation and correlation with other imaging modalities virtually impossible. We present an optimized on-block H&E staining technique that improves contrast for identifying collagenous stroma during cryo-fluorescence tomography (CFT) sectioning.

View Article and Find Full Text PDF

Clinical confocal laser endomicroscopy for imaging of autofluorescence signals of human brain tumors and non-tumor brain.

J Cancer Res Clin Oncol

December 2024

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Purpose: Analysis of autofluorescence holds promise for brain tumor delineation and diagnosis. Therefore, we investigated the potential of a commercial confocal laser scanning endomicroscopy (CLE) system for clinical imaging of brain tumors.

Methods: A clinical CLE system with fiber probe and 488 nm laser excitation was used to acquire images of tissue autofluorescence.

View Article and Find Full Text PDF

A novel tape-free sample preparation method for human osteochondral cryosections for high throughput hyperspectral imaging.

Histochem Cell Biol

December 2024

School of Mechanical, Medical & Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, Brisbane, QLD, 4059, Australia.

Understanding the osteochondral junction, where non-mineralised cartilage and mineralised bone converge, is crucial for joint health. Current sample preparation techniques are insufficient for detailed spatial hyperspectral imaging analysis. Using the enhanced Kawamoto method, we used the super cryo embedding medium's temperature-dependent properties to transfer high-quality tissue samples onto slides for spatial imaging analysis.

View Article and Find Full Text PDF

Here, we present a protocol for Xenium spatial transcriptomics studies using fixed frozen mouse brain sections. We describe steps for intracardiac perfusion, cryosectioning, and floating section mounting of brain sections, which enable runs on the Xenium analyzer and data delivery. We demonstrate that, in addition to the 10× Genomics-validated formalin-fixed paraffin-embedded (FFPE) and fresh frozen sections, fixed frozen thin brain sections are compatible with the Xenium platform and provide excellent imaging and quantification results for spatially resolved gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!