Repetitive activation of glutamatergic inputs evokes a long-lasting excitation in rat globus pallidus neurons in vitro.

J Neurophysiol

Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163, USA.

Published: January 2007

External globus pallidus (GPe) neurons express abundant metabotropic glutamate receptor 1 (mGluR1) in their somata and dendrites and receive glutamatergic inputs mainly from the subthalamic nucleus. We investigated whether synaptically released glutamate could activate mGluR1s using whole cell and cell-attached recordings in rat brain slice preparations. Repetitive internal capsule stimulation evoked EPSPs followed by a slow depolarizing response (sDEPO) lasting 10-20 s. Bath application of both GABA(A) and GABA(B) receptor antagonists increased the amplitude of sDEPOs. A mixture of AMPA/kainate and N-methyl-d-aspartate receptor antagonists did not alter sDEPOs. The induction of sDEPOs was only partially mediated by mGluR1 because mGluR1 antagonists reduced but failed to completely block the responses. Voltage-clamp recordings revealed that slow inward currents sensitive to mGluR1 antagonist were larger at -60 than at -100 mV, whereas the currents insensitive to mGluR1 antagonist were larger at -100 than at -60 mV. In cell-attached recordings, repetitive internal capsule stimulation evoked long-lasting excitations in GPe neurons, which were also partially suppressed by mGluR1 antagonists. Application of a glutamate uptake inhibitor or an mGluR1 agonist significantly increased the spontaneous firing rate but decreased the excitations to repetitive stimulation. These results suggest that synaptically released glutamate can activate mGluR1, contributing to the induction of long-lasting excitation in GPe neurons and that background mGluR1 activation suppresses the slow mGluR1 responses. Thus mGluR1 may play important roles in the control of GPe neuronal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00010.2006DOI Listing

Publication Analysis

Top Keywords

gpe neurons
12
mglur1
11
glutamatergic inputs
8
long-lasting excitation
8
globus pallidus
8
synaptically released
8
released glutamate
8
glutamate activate
8
cell-attached recordings
8
repetitive internal
8

Similar Publications

Unraveling the neural signatures: Distinct pallidal patterns in dystonia subtypes.

Parkinsonism Relat Disord

January 2025

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA; Neurological Institute, University Hospitals, Cleveland, OH, USA; Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. Electronic address:

Introduction: Dystonia manifests as slow twisting movements (pure dystonia) or repetitive, jerky motions (jerky dystonia). Dystonia can coexist with myoclonus (myoclonus dystonia) or tremor (tremor dystonia). Each of these presentations can have distinct etiology, can involve discrete sensorimotor networks, and may have characteristic neurophysiological signature.

View Article and Find Full Text PDF

The External Globus Pallidus as the Hub of the Auditory Cortico-Basal Ganglia Loop.

eNeuro

November 2024

Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.

Article Synopsis
  • The cortico-basal ganglia loop has been traditionally seen as three separate networks: motor, limbic, and associative, but this view doesn’t fully capture its complexity, especially in sensory processing like hearing.
  • Recent research demonstrates an auditory-specific loop within this system using transgenic mice, identifying the caudal external globus pallidus (GPe) as a key output node.
  • GABAergic neurons in the caudal GPe are crucial as they connect to various brain regions, suggesting these circuits could be important for triggering defensive responses to sounds.
View Article and Find Full Text PDF

The globus pallidus externa (GPe) is a heterogenous nucleus of the basal ganglia, with intricate connections to other basal ganglia nuclei, as well as direct connections to the cortex. The anatomic, molecular and electrophysiologic properties of cortex-projecting pallidocortical neurons are not well characterized. Here we show that pallidocortical neurons project to diverse motor and non-motor cortical regions, are organized topographically in the GPe, and segregate into two distinct electrophysiological and molecular phenotypes.

View Article and Find Full Text PDF

Exploring the origin of beta - band oscillation in the cortex - basal ganglia model plays an important role in understanding the mechanism of Parkinson's disease. In this paper, we investigate the effect of three synaptic transmission time delays in the subthalamic nucleus(STN) - the globus pallidus external segment(GPe) loop, the excitatory neurons in the cortex(EXN) - the inhibitory neurons in the cortex(INN) loop and EXN - STN loop on critical conditions of occurrence of beta - band oscillation through Hopf bifurcation theory including linear stability analysis, center manifold theorem and normal form analysis. Our results reveal that suitable transmission time delay can induce beta - band oscillation through Hopf bifurcation, and the critical condition under which Hopf bifurcation occurs is more sensitive to the transmission time delay in EXN - STN loop , where if , beta - band oscillation always occurs for any transmission time delay in STN - GPe, EXN - INN loops.

View Article and Find Full Text PDF

Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!