Mitochondrial dysfunction is implicated in the pathophysiology of Parkinson's disease (PD), a common age-associated neurodegenerative disease characterized by intraneuronal inclusions (Lewy bodies) and progressive degeneration of the nigrostriatal dopamine (DA) system. It has recently been demonstrated that midbrain DA neurons of PD patients and elderly humans contain high levels of somatic mtDNA mutations, which may impair respiratory chain function. However, clinical studies have not established whether the respiratory chain deficiency is a primary abnormality leading to inclusion formation and DA neuron death, or whether generalized metabolic abnormalities within the degenerating DA neurons cause secondary damage to mitochondria. We have used a reverse genetic approach to investigate this question and created conditional knockout mice (termed MitoPark mice), with disruption of the gene for mitochondrial transcription factor A (Tfam) in DA neurons. The knockout mice have reduced mtDNA expression and respiratory chain deficiency in midbrain DA neurons, which, in turn, leads to a parkinsonism phenotype with adult onset of slowly progressive impairment of motor function accompanied by formation of intraneuronal inclusions and dopamine nerve cell death. Confocal and electron microscopy show that the inclusions contain both mitochondrial protein and membrane components. These experiments demonstrate that respiratory chain dysfunction in DA neurons may be of pathophysiological importance in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783140PMC
http://dx.doi.org/10.1073/pnas.0605208103DOI Listing

Publication Analysis

Top Keywords

respiratory chain
16
intraneuronal inclusions
8
midbrain neurons
8
chain deficiency
8
knockout mice
8
neurons
6
progressive parkinsonism
4
mice
4
parkinsonism mice
4
mice respiratory-chain-deficient
4

Similar Publications

The systemic evolutionary theory of the origin of cancer (SETOC): an update.

Mol Med

January 2025

Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy.

The Systemic Evolutionary Theory of the Origin of Cancer (SETOC) is a recently proposed theory founded on two primary principles: the cooperative and endosymbiotic process of cell evolution as described by Lynn Margulis, and the integration of complex systems operating in eukaryotic cells, which is a core concept in systems biology. The SETOC proposes that malignant transformation occurs when cells undergo a continuous adaptation process in response to long-term injuries, leading to tissue remodeling, chronic inflammation, fibrosis, and ultimately cancer. This process involves a maladaptive response, wherein the 'endosymbiotic contract' between the nuclear-cytoplasmic system (derived from the primordial archaeal cell) and the mitochondrial system (derived from the primordial α-proteobacterium) gradually breaks down.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) detection can predict clinical risk in early-stage tumors. However, clinical applications are constrained by the sensitivity of clinically validated ctDNA detection approaches. NeXT Personal is a whole-genome-based, tumor-informed platform that has been analytically validated for ultrasensitive ctDNA detection at 1-3 ppm of ctDNA with 99.

View Article and Find Full Text PDF

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.

View Article and Find Full Text PDF

Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!