Idiopathic pulmonary arterial hypertension (IPAH) is pathogenetically related to low levels of the vasodilator nitric oxide (NO). Because NO regulates cellular respiration and mitochondrial biogenesis, we hypothesized that abnormalities of bioenergetics may be present in IPAH. Evaluation of pulmonary artery endothelial cells from IPAH and control lungs in vitro revealed that oxygen consumption of IPAH cells was decreased, especially in state 3 respiration with substrates glutamate-malate or succinate, and this decrease paralleled reduction in Complex IV activity and IPAH cellular NO synthesis. IPAH pulmonary artery endothelial cells had decreased mitochondrial dehydrogenase activity and lowered mitochondrial numbers per cell and mitochondrial DNA content, all of which increased after exposure to NO donors. Although IPAH/pulmonary artery endothelial cells' ATP content was similar to control under normoxia, cellular ATP did not change significantly in IPAH cells under hypoxia, whereas ATP decreased 35% in control cells, identifying a greater dependence on cellular respiration for energy in control cells. Evidence that glucose metabolism was subserving the primary role for energy requirements of IPAH cells was provided by the approximately 3-fold greater glycolytic rate of IPAH cells. Positron emission tomography scan with [18F]fluoro-deoxy-D-glucose performed on IPAH patients and healthy controls revealed significantly higher uptake in IPAH lungs as compared with controls, confirming that the glycolytic rate was increased in vivo. Thus, there are substantial changes in bioenergetics of IPAH endothelial cells, which may have consequences for pulmonary hypertensive responses and potentially in development of novel imaging modalities for diagnosis and evaluation of treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783136PMC
http://dx.doi.org/10.1073/pnas.0605080104DOI Listing

Publication Analysis

Top Keywords

artery endothelial
16
endothelial cells
16
ipah cells
16
pulmonary artery
12
ipah
12
cells
10
cellular respiration
8
bioenergetics ipah
8
cells decreased
8
control cells
8

Similar Publications

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Venous thromboembolism (VTE) and arterial thrombosis (AT) are distinct yet closely related pathological processes. While traditionally considered separate entities, accumulating evidence suggests that they share common risk factors, such as inflammation and endothelial dysfunction (ED). This review explores the parallels and differences between venous and arterial thrombosis, with particular attention to the role of unprovoked VTE and its potential links to atherosclerosis and systemic inflammation.

View Article and Find Full Text PDF

GV1001, hTERT Peptide Fragment, Prevents Doxorubicin-Induced Endothelial-to-Mesenchymal Transition in Human Endothelial Cells and Atherosclerosis in Mice.

Cells

January 2025

The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, University of California, 714 Tiverton Ave, Los Angeles, CA 90095, USA.

Doxorubicin is a highly effective anticancer agent, but its clinical use is restricted by severe side effects, including atherosclerosis and cardiomyopathy. These complications are partly attributed to doxorubicin's ability to induce endothelial-to-mesenchymal transition (EndMT) in vascular endothelial cells, a critical process in the initiation and progression of atherosclerosis and cardiomyopathy. GV1001, a multifunctional peptide with anti-inflammatory, anti-cancer, antioxidant, and anti-Alzheimer's properties, has demonstrated inhibition of EndMT.

View Article and Find Full Text PDF

Objective: The primary objective of this study is to develop and validate a high-risk model for Arteriovenous Fistula Thrombosis (AVFT) in patients undergoing autogenous arteriovenous fistula surgery for hemodialysis.

Methods: Retrospectively, we collected general information, clinical characteristics, laboratory examinations, and dialysis-related factors from a cohort of 1465 patients who received continuous arteriovenous fistula surgery at the Hemodialysis Access Center of Sichuan Provincial People's Hospital between January 2019 and June 2022. The patients were randomly divided into a training set and a validation set in a 2:1 ratio.

View Article and Find Full Text PDF

Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.

Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!