This study concerns the self-assembly of virus-like particles (VLPs) composed of an icosahedral virus protein coat encapsulating a functionalized spherical nanoparticle core. The recent development of efficient methods for VLP self-assembly has opened the way to structural studies. Using electron microscopy with image reconstruction, the structures of several VLPs obtained from brome mosaic virus capsid proteins and gold nanoparticles were elucidated. Varying the gold core diameter provides control over the capsid structure. The number of subunits required for a complete capsid increases with the core diameter. The packaging efficiency is a function of the number of capsid protein subunits per gold nanoparticle. VLPs of varying diameters were found to resemble to three classes of viral particles found in cells (T=1, 2, and 3). As a consequence of their regularity, VLPs form three-dimensional crystals under the same conditions as the wild-type virus. The crystals represent a form of metallodielectric material that exhibits optical properties influenced by multipolar plasmonic coupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783121 | PMC |
http://dx.doi.org/10.1073/pnas.0610542104 | DOI Listing |
ACS Nano
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States.
Structural variants of the synthetic opioid fentanyl are a major threat to public health. Following an investigation showing that many derivatives are poorly detected by commercial lateral flow and related assays, we created hapten conjugate vaccines using an immunogenic virus-like particle carrier and eight synthetic fentanyl derivatives designed to mimic the structural features of several of the more dangerous analogues. Immunization of mice elicited strong antihapten humoral responses, allowing the screening of hundreds of hapten-specific hybridomas for binding strength and specificity.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, University of Colorado, Boulder, CO, United States of America.
PEG10 is a retroelement-derived Mart-family gene that is necessary for placentation and has been implicated in neurological disease. PEG10 resembles both retrotransposon and retroviral proteins and forms virus-like particles (VLPs) that can be purified using iodixanol ultracentrifugation. It is hypothesized that formation of VLPs is crucial to the biological roles of PEG10 in reproduction and neurological health.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States.
Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes.
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFViruses
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Center for Swine Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!