Oct4 encodes a transcription factor that is involved in the maintenance of self-renewal in stem cells. Recently, the molecular mechanisms that regulate Oct4 expression have come under investigation. In this study, we demonstrate that the orphan nuclear receptor steroidogenic factor-1 (SF-1) behaves as a transcriptional activator of human Oct4 (hOct4) through direct interaction with a SF-1 binding element in the hOct4 proximal promoter. We found that Oct4 and SF-1 were co-expressed in undifferentiated human embryonal carcinoma NCCIT cells and downregulated during retinoic acid-mediated differentiation. We examined the functional role played by SF-1 in regulation of hOct4 transcription using a luciferase reporter assay and Western blot analysis. Overexpression of SF-1 increased up to about threefold hOct4 promoter activity and endogenous hOct4 protein expression. Sequence analysis of the hOct4 promoter revealed that the transcriptional activity was closely linked to Conserved Regions 1 (CR1) and 2 (CR2), which contain three putative SF-1-binding sites (1st, 2nd, and 3rd SF-1). Binding assays and mutagenesis of binding sites indicated that the 1st and 2nd SF-1 elements (in CR1 and CR2, respectively) might be important cis-regulatory elements in hOct4 promoter activity. However, differences in response to SF-1 overexpression between wild-type and mutant hOct4 promoters revealed that the 1st SF-1 element is the key binding site for SF-1-mediated transcriptional activation. Thus, our data indicate that SF-1 plays a crucial role in the regulation of hOct4 transcription through direct binding to the 1st SF-1 in CR1 of the hOct4 proximal promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.21244 | DOI Listing |
J Pers Med
June 2021
Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
Induced pluripotent stem cell (iPSC)-derived cell products hold great promise as a potential cell source in personalized medicine. As concerns about the potential risk of graft-related severe adverse events, such as tumor formation from residual pluripotent cells, currently restrict their applicability, we established an optimized tool for therapeutic intervention that allows drug-controlled, specific and selective ablation of either iPSCs or the whole graft through genetic safety switches. To identify the best working system, different tools for genetic iPSC modification, promoters to express safety switches and different safety switches were combined.
View Article and Find Full Text PDFCell Reprogram
October 2013
1 Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 9300194, Japan .
Regenerative therapy is a new strategy for the end-stage heart failure; however, the ideal cell source has not yet been established for this therapy. We expected that the amnion might be an ideal cell source for cardiac regenerative therapy and that the differentiation potency of the human amnion mesenchymal cells (hAMCs) could be improved by overexpression of Oct4, a key factor that maintains the undifferentiated state. A plasmid vector was made by insertion of the Oct4 open reading frame (ORF) under control of a cytomegalovirus (CMV) promoter (pCMV-hOct4) and transfected into hAMCs by electroporation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
Department of Biomedical Science, CHA Stem Cell Institute, College of Life Science, CHA University, Pochon-si, Gyeonggi-do, South Korea.
OCT4 plays a crucial role in pluripotency and self-renewal of embryonic stem cells. OCT4 is also expressed in testicular germ cell tumors (GCTs), suggesting the important function of OCT4 as an oncogenic factor in GCTs. To understand the molecular mechanism of human OCT4 (hOCT4) in tumorigenesis as well as stemness, we identified hOCT4 transactivation domains in human embryonic carcinoma cells.
View Article and Find Full Text PDFDev Genes Evol
October 2008
Graduate School of Life Science and Biotechnology, CHA Research Institute, College of Medicine, Seoul, South Korea.
To examine whether the epigenetic status of the human Oct4 promoter is similarly regulated in mouse cells, we engineered a human bacterial artificial chromosome to express green fluorescent protein under the control of the hOct4 promoter and stably integrated it into mouse embryonic stem cells (mESCs), NIH3T3, and 293T cells. The hOct4 promoter is unmethylated in mESCs and it undergoes methylation during retinoic acid-induced differentiation. However, the hOct4 promoter is demethylated in NIH3T3 cells even though it is fully methylated in 293T cells.
View Article and Find Full Text PDFJ Cell Biochem
August 2007
Chabiotech Co. Ltd, Seoul, South Korea.
Oct4 encodes a transcription factor that is involved in the maintenance of self-renewal in stem cells. Recently, the molecular mechanisms that regulate Oct4 expression have come under investigation. In this study, we demonstrate that the orphan nuclear receptor steroidogenic factor-1 (SF-1) behaves as a transcriptional activator of human Oct4 (hOct4) through direct interaction with a SF-1 binding element in the hOct4 proximal promoter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!