[Understanding, preventing and better caring for chronic obstructive lung disease].

Soins

Service des Maladies Respiratoires, CHU Montpellier.

Published: November 2006

Download full-text PDF

Source

Publication Analysis

Top Keywords

[understanding preventing
4
preventing better
4
better caring
4
caring chronic
4
chronic obstructive
4
obstructive lung
4
lung disease]
4
[understanding
1
better
1
caring
1

Similar Publications

Understanding whether risk preference represents a stable, coherent trait is central to efforts aimed at explaining, predicting and preventing risk-related behaviours. We help characterize the nature of the construct by adopting a systematic review and individual participant data meta-analytic approach to summarize the temporal stability of 358 risk preference measures (33 panels, 57 samples, 579,114 respondents). Our findings reveal noteworthy heterogeneity across and within measure categories (propensity, frequency and behaviour), domains (for example, investment, occupational and alcohol consumption) and sample characteristics (for example, age).

View Article and Find Full Text PDF

Never events in the operating room are a surgeon's nightmare, with an incidence rate of 54%. These events are highly stressful for theatre staff and significantly compromise patient safety. The aim of this project is to avoid never events in trauma and orthopaedic theatres by ensuring that theatre staff adhere to the surgical pause and imaging pause protocols through regular audits.

View Article and Find Full Text PDF

Individuals experience vaccination hesitancy for many reasons. However, not receiving vaccinations leaves individuals at increased risk for vaccine-preventable illnesses. Individuals in rural areas are more likely to experience vaccine hesitancy.

View Article and Find Full Text PDF

The Application of Machine Learning Algorithms to Predict HIV Testing in Repeated Adult Population-Based Surveys in South Africa: Protocol for a Multiwave Cross-Sectional Analysis.

JMIR Res Protoc

January 2025

South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research Extramural Unit, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.

Background: HIV testing is the cornerstone of HIV prevention and a pivotal step in realizing the Joint United Nations Program on HIV/AIDS (UNAIDS) goal of ending AIDS by 2030. Despite the availability of relevant survey data, there exists a research gap in using machine learning (ML) to analyze and predict HIV testing among adults in South Africa. Further investigation is needed to bridge this knowledge gap and inform evidence-based interventions to improve HIV testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!