This study tested the relationship between frequency selectivity and the minimum spacing between harmonics necessary for accurate fo discrimination. Fundamental frequency difference limens (fo DLs) were measured for ten listeners with moderate sensorineural hearing loss (SNHL) and three normal-hearing listeners for sine- and random-phase harmonic complexes, bandpass filtered between 1500 and 3500 Hz, with fo's ranging from 75 to 500 Hz (or higher). All listeners showed a transition between small (good) fo DLs at high fo's and large (poor) fo DLs at low fo's, although the fo at which this transition occurred (fo,tr) varied across listeners. Three measures thought to reflect frequency selectivity were significantly correlated to both the fo,tr and the minimum fo DL achieved at high fo's: (1) the maximum fo for which fo DLs were phase dependent, (2) the maximum modulation frequency for which amplitude modulation and quasi-frequency modulation were discriminable, and (3) the equivalent rectangular bandwidth of the auditory filter, estimated using the notched-noise method. These results provide evidence of a relationship between fo discrimination performance and frequency selectivity in listeners with SNHL, supporting "spectral" and "spectro-temporal" theories of pitch perception that rely on sharp tuning in the auditory periphery to accurately extract fo information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2372452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!