When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed "electromotile hearing." Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, guinea pigs were tested in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, it is concluded that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broadband or noisy) sound at a frequency of 8 kHz or above.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132799 | PMC |
http://dx.doi.org/10.1121/1.2359238 | DOI Listing |
Sci Adv
January 2025
Department of Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
Prior knowledge changes how the brain processes sensory input. Whether knowledge influences initial sensory processing upstream of the brain, in the spinal cord, is unknown. Studying electric potentials recorded invasively and noninvasively from the human spinal cord at millisecond resolution, we find that the cord generates electric potentials at 600 hertz that are modulated by prior knowledge about the time of sensory input, as early as 13 to 16 milliseconds after stimulation.
View Article and Find Full Text PDFTunis Med
January 2025
Physical Medicine and rehabilitation Department, Military hospital of Tunis, Tunisia.
Unlabelled: Introduction-Aim: Chronic low back pain affects 80% of individuals at some point in their lives and has significant socioeconomic impacts. This study aims to compare the efficacy of mesotherapy with transcutaneous electrical nerve stimulation (TENS) in treating chronic low back pain.
Methods: A randomized bicentric study was conducted at the Military Hospital of Tunis and the Multidisciplinary Military Polyclinic of Mefeteh Saadallah between August 2023 and June 2024.
J Oral Biol Craniofac Res
December 2024
Department of Prosthodontics, School of Dental Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India.
Aim: The aim of the present study was to comparatively evaluate the retention of complete dentures and oral health-related quality of life (OHRQoL) of patients with conventional and bioelectric impressions or transcutaneous electric nerve stimulation (TENS).
Materials And Methods: A total of thirty (n = 30) completely edentulous patients were randomly distributed into two groups: Group-C (n = 15) (Conventional) and Group-T (n = 15) (bioelectric). In Group C, border molding was performed using the manual manipulation of borders, and the final impression was made using zinc-oxide eugenol.
J Biomed Mater Res A
January 2025
Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.
In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries.
View Article and Find Full Text PDFBMJ Open
December 2024
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!