A few (1:1) and (1:2) metal complexes of cobalt(II), nickel(II), copper(II) and zinc(II) have been isolated with ligand derived from the condensation of 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine with 2-acetylpyridine (L(1)) and characterized by elemental analysis, conductivity measurements, infrared, electronic, (1)H NMR spectral data, magnetic and thermogravimetric analyses. Due to insolubility in water and most of the common organic solvents and infusibility at higher temperatures, all the complexes are thought to be polymeric in nature. A square-planar geometry was suggested for copper(II) and octahedral proposed for cobalt(II), nickel(II) and zinc(II). Some of the chemically synthesized compounds have been screened in vitro against the three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Escherichia coli) organisms. It is observed that the coordination of metal ion has pronounced effect on the microbial activities of the ligand. The metal complexes have higher antimicrobial effect than the free ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2006.10.016DOI Listing

Publication Analysis

Top Keywords

cobaltii nickelii
12
nickelii copperii
8
copperii zincii
8
metal complexes
8
synthesis characterization
4
characterization cobaltii
4
complexes
4
zincii complexes
4
complexes schiff
4
schiff base
4

Similar Publications

Paramagnetic complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) derivatives have shown potential for molecular imaging with magnetic resonance. DOTA-tetraglycinate (DOTA-4AmC) coordinated with lanthanide metal ions (Ln) demonstrates pH/temperature sensing with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) and Chemical Exchange Saturation Transfer (CEST), respectively, detecting nonexchangeable (e.g.

View Article and Find Full Text PDF

Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield.

View Article and Find Full Text PDF

The 1,3-dipolar cycloaddition reaction (click chemistry approach) was employed to create a hexa-ferrocenylated 1,3,5-triphenylbenzene derivative. Leveraging the presence of metal-chelating sites associated with 1,2,3-triazole moieties and 1,4-dinitrogen systems (ethylenediamine-like), as well as tridentate chelating sites (1,4,7-trinitrogen, diethylene triamine-like) systems, the application of this molecule as a chemosensor for divalent transition metal cations was investigated. The interactions were probed voltammetrically and spectrofluorimetrically against seven selected cations: iron(II) (Fe), cobalt(II) (Co), nickel(II) (Ni), copper(II) (Cu), zinc(II) (Zn), cadmium(II) (Cd), and manganese(II) (Mn).

View Article and Find Full Text PDF

Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution.

Dalton Trans

September 2024

Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.

The structures of nine hydrated metal ions in aqueous solution have been redetermined by large angle X-ray scattering to obtain experimental data of better quality than those reported 40-50 years ago. Accurate M-O and M-(O-H)⋯O distances and M-O(H)⋯O bond angles are reported for the hydrated magnesium(II), aluminium(III), manganese(II), iron(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) ions; the subscripts I and II denote oxygen atoms in the first and second hydration sphere, respectively. Reported structures of hydrated metal ions in aqueous solution are summarized and evaluated with emphasis on a possible relationship between M-O-O bond angles and bonding character.

View Article and Find Full Text PDF

Green energy transition has supposed to give a huge boost to the electric vehicle rechargeable battery market. This has generated a compelling demand for raw materials, such as cobalt and nickel, which are key common constituents in lithium-ion batteries (LIBs). However, their existing mining protocols and the concentrated localization of such ores have made cobalt and nickel mineral conundrums, and their supplies experience shortages, which threaten to slow the progress of the renewable energy transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!