In order to learn more about the molecular basis for the inhibition of DNA replication produced by antitumor platinum drugs, we investigated DNA polymerization using DNA templates site-specifically modified with the 1,2-GG intrastrand cross-link of dinuclear bifunctional [{trans-PtCl(NH(3))(2)}(2){l-spermidine-N1,N8}](3+)(BBR3571) or conventional mononuclear cisplatin. These cross-links which have the same nature, but differ in the size and character of the conformational alteration induced in double-helical DNA, were analyzed for bypass ability with reverse transcriptase of human immunodeficiency virus type 1 and Klenow fragment of DNA polymerase I deficient in exonuclease activity. We found that the 1,2-GG intrastrand CL of BBR3571 inhibited DNA translesion synthesis markedly more than the same adduct of cisplatin. This result was explained by a larger size of the cross-link of BBR3571 and by a flexibility induced in DNA by this cross-link which can make the productive binding of this adduct at the polymerase site more difficult.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2006.11.022DOI Listing

Publication Analysis

Top Keywords

12-gg intrastrand
12
intrastrand cross-link
8
dinuclear bifunctional
8
dna
8
dna polymerization
8
cross-link
5
cross-link antitumor
4
antitumor dinuclear
4
bifunctional platinum
4
platinum compound
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!