Objectives: The bactericidal efficacy of diode lasers has already been demonstrated in vitro. We investigated the reduction of aerobe bacteria - colonizing rough titanium samples in biofilms intraorally grown - by diode lasers of different wave lengths.

Material And Methods: Twenty-two volunteers participated in the trial. They were fitted for 10 days with custom-made intraoral plastic splints carrying titanium sleeves. A part of the sleeves was then irradiated with diode lasers in different modes. The other part remained non-irradiated and served as control. Directly after irradiation, the sleeves were swabbed and the gained bacteria were first examined microscopically and then were cultured under aerobic conditions.

Results: The bacteria in the controls and in the treated samples were quantified. A comparison with the controls revealed a marked overall reduction of bacterial colonization in all irradiated sleeves. Continuous irradiation for 20 s reduced bacteria counts by 99.67% at 810 nm and 99.58% at 980 nm. Repeating the 20 s exposure five times reduced counts by 99.98% at 810 nm and by 99.39% at 980 nm. A 98.86% reduction was seen after irradiation in pulsed mode. A further analysis in respect of different isolated bacteria revealed that the streptococci group was reduced by 99.29-99.99%, while the staphylococci group was reduced to a lesser extent in the range 94.67-99.99%.

Conclusion: The results are of clinical relevance. In comparison with the mean bacterial counts of the untreated samples, all irradiation programs studied in this investigation reduced mean bacterial colonization in a biofilm on intraoral rough titanium surfaces by more than 98%. The actual extent of reduction was dependent on the bacteria species as well as on the irradiation mode.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2006.01298.xDOI Listing

Publication Analysis

Top Keywords

diode lasers
16
rough titanium
12
titanium surfaces
8
bacterial colonization
8
group reduced
8
bacteria
6
irradiation
5
reduced
5
decontamination rough
4
titanium
4

Similar Publications

Electronically Controlled Dual-Wavelength Switchable SRS Fiber Amplifier in the NIR-II Region for Multispectral Photoacoustic Microscopy.

Laser Photon Rev

October 2024

Harvard Medical School, Boston, MA 02114, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Cardiology, Erasmus Medical Center, Rotterdam GD3015, The Netherlands; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Photoacoustic microscopy (PAM) is a high-resolution and non-invasive imaging modality that provides optical absorption contrast. By employing dual- or multiple-wavelength excitation, PAM extends its capabilities to offer valuable spectroscopic information. To achieve efficient multispectral PAM imaging, an essential requirement is a light source characterized by a high repetition rate and switching rate, a ≈microjoule pulse energy, and a ≈nanosecond pulse duration.

View Article and Find Full Text PDF

Holographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.

View Article and Find Full Text PDF

An ultra-narrow-linewidth laser is a core device in fields such as optical atomic clocks, quantum communications, and microwave photonic oscillators. This paper reports an ultra-narrow-linewidth self-injection locked semiconductor laser, which is realized through optical feedback from a high-Q (258 million) Fabry-Perot (FP) cavity constructed with three mirrors, generating an output power of 12 mW. Employing a delay self-heterodyne method based on a signal source analyzer, the phase noise of the laser is -129 dBc/Hz at 100 kHz offset frequency, with an intrinsic linewidth of 3 mHz.

View Article and Find Full Text PDF

Canard cascading (CC) is observed in dynamical networks with global adaptive coupling. It is a slow-fast phenomenon characterized by a recurrent sequence of fast transitions between distinct and slowly evolving quasistationary states. In this Letter, we uncover the dynamical mechanisms behind CC, using an illustrative example of globally and adaptively coupled semiconductor lasers, where CC represents sequential switching on and off the lasers.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and safety of Ahmed glaucoma valve (AGV) implantation with subsequent trans-scleral diode cyclophotocoagulation (CPC) as the main intervention if IOP remained medically uncontrolled.

Patients And Methods: Charts of 108 consecutive eyes (90 patients) that underwent AGV implantation from 2003 to 2018 at a single clinical practice were retrospectively reviewed. The procedure was considered a failure if any of the following occurred: additional incisional glaucoma surgery, IOP >21 mmHg or < 20% reduction from baseline on 2 consecutive study visits after 3 months, IOP ≤ 5 mmHg on 2 consecutive study visits after 3 months, loss of light perception, or AGV removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!