The effect of exogenous noradrenaline (NA) (1.6 mg x kg(-1) i.p., 35 min prior sacrifice) on the activity of antioxidant enzymes (AOE) copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as lipid peroxides (LP) concentration were studied in the rat interscapular brown adipose tissue (IBAT) and heart of saline (controls) and N(omega)-nitro-L-arginine methyl ester (L-NAME) treated rats (10 mg x kg(-1), i.p., during 3 days and 20 min before NA). NA differently affects both AOE activities and LP production in the IBAT and heart. Thus, NA inhibited the activity of all IBAT AOE and LP production while in the heart it markedly increased CAT activity only, but had no effect on any of SODs activities and LP concentration. L-NAME, a nitric oxide synthase blocker, completely abolished the NA-induced inhibition of the IBAT AOE and LP production, whereas in the heart it was without effect. In conclusion, these results indicate that both NA and L-NAME effects on AOE activity and LP production are tissue specific and also suggest that nitric oxide mediates the NA-induced inhibition of AOE activity and LP production in the IBAT only.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33549/physiolres.931026 | DOI Listing |
Arq Bras Cardiol
January 2025
Department of Cardiovascular Medicine - Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Zhejiang - China.
Background: ST-segment elevation myocardial infarction (STEMI) is a common and severe form of acute myocardial infarction (AMI).
Objectives: The study aimed to investigate the relationship between serum nitric oxide (NO) and endothelin-1 (ET-1) levels with the severity of STEMI and their predictive value for major adverse cardiovascular events (MACE) within one year after percutaneous coronary intervention (PCI) in STEMI patients.
Methods: The retrospective study was conducted on 269 STEMI patients who underwent PCI.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.
View Article and Find Full Text PDFIran J Med Sci
December 2024
Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, Egypt.
Background: The risk of cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is estimated to be far greater than that in the general population. Adropin regulates endothelial function and may play a role in the pathogenesis of CVD. Angiotensin-converting enzyme inhibitor (ACEI) treatment was reported to have a protective effect on both renal and cardiovascular function.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University 3181 SW Sam Jackson Park Road Portland Oregon 97239 USA
Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from (-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!