O(2)-sensing in the carotid body occurs in neuroectoderm-derived type I glomus cells where hypoxia elicits a complex chemotransduction cascade involving membrane depolarization, Ca(2+) entry and the release of excitatory neurotransmitters. Efforts to understand the exquisite O(2)-sensitivity of these cells currently focus on the coupling between local P(O2) and the open-closed state of K(+)-channels. Amongst multiple competing hypotheses is the notion that K(+)-channel activity is mediated by a phagocytic-like multisubunit enzyme, NADPH oxidase, which produces reactive oxygen species (ROS) in proportion to the prevailing P(O2). In O(2)-sensitive cells of lung neuroepithelial bodies (NEB), multiple studies confirm that ROS levels decrease in hypoxia, and that E(M) and K(+)-channel activity are indeed controlled by ROS produced by NADPH oxidase. However, recent studies in our laboratories suggest that ROS generated by a non-phagocyte isoform of the oxidase are important contributors to chemotransduction, but that their role in type I cells differs fundamentally from the mechanism utilized by NEB chemoreceptors. Data indicate that in response to hypoxia, NADPH oxidase activity is increased in type I cells, and further, that increased ROS levels generated in response to low-O(2) facilitate cell repolarization via specific subsets of K(+)-channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570203 | PMC |
http://dx.doi.org/10.1016/j.resp.2006.12.003 | DOI Listing |
Biomedica
December 2024
Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México.
Introduction: Chronic granulomatous disease is a defect in phagocytosis due to deficiency of gp91phox, p22phox, p47phox, p40phox, and p67phox (classic form of the disease). Recently, EROS and p40phox deficiency were described as responsible for the non-classical form of the disease. The 1,2,3-dihydrorhodamine oxidation technique, with phorbol-12-myristate-13-acetate as a stimulus, is performed to diagnose the classic chronic granulomatous disease.
View Article and Find Full Text PDFBiomedica
December 2024
Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México.
Chronic granulomatous disease is the inborn error of immunity with the highest frequency of invasive aspergillosis. In this context, invasive aspergillosis is frequent in adolescence, with rare cases before one year of age. We present a case of chronic granulomatous disease and invasive aspergillosis in a four-month-old infant.
View Article and Find Full Text PDFBiomedica
December 2024
Departamento de Alergología e Inmunología Clínica, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
Introduction: Chronic granulomatous disease is a congenital immune disorder characterized by increased susceptibility to fungal and bacterial infections and dysregulated inflammation. It is caused by defects in the NADPH oxidase and EROS protein.
Objective: To characterize clinically and genetically four patients with chronic granulomatous disease at the Hospital Infantil de México Federico Gómez.
Ann Hepatol
January 2025
Department of Gastroenterology, Xinhua Hospital of zhejiang Province: The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD), now recognized as metabolic dysfunction-associated steatotic liver disease (MASLD), represents a significant and escalating global health challenge. Its prevalence is intricately linked to obesity, insulin resistance, and other components of the metabolic syndrome. As our comprehension of MASLD deepens, it has become evident that this condition extends beyond the liver, embodying a complex, multi-systemic disease with hepatic manifestations that mirror the broader metabolic landscape.
View Article and Find Full Text PDFJ Reprod Infertil
January 2024
Department of Histology and Embryology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey.
Background: The newest NOX isoform, NOX5, has been found in mammalian spermatozoa. Many physiological and pathological situations in spermatozoa are mediated by reactive oxygen species (ROS). NOX5 is the main source of ROS in spermatozoa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!