A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An exploration of the function of the triceps surae during normal gait using functional electrical stimulation. | LitMetric

Gastrocnemius and soleus have a common tendon and both are active during stance phase, where they are thought to arrest and control tibial advance. Soleus is associated with the production of an extending moment at the knee. The two-joint gastrocnemius, which crosses the knee joint, will have an additional contribution to the knee flexors. Recent work using induced acceleration analysis (IAA) has demonstrated distinct differences between the actions of gastrocnemius and soleus. This study aims to use gait analysis to provide in vivo examination of these theoretical predictions. Functional electrical stimulation (FES) was chosen to provide a perturbation in muscle force, a close physical analogue to the theoretical predictions of IAA. Five adult male subjects, with no gait problems, participated. Each had gastrocnemius and soleus stimulated at three different timings during normal gait, while 3D gait data were collected. The order of testing was randomised and unstimulated trials were randomly interspersed to act as a control. The results show very different actions for soleus (ankle plantarflexing/knee extending) and gastrocnemius (ankle dorsiflexing/knee flexing) in stance phase. The counterintuitive nature of the action of gastrocnemius suggests that further clinical and biomechanical investigation into this muscle's function is required. The actions of both muscles at the knee confirm published IAA predictions. In vivo evidence such as this gives greater confidence when using model predictions. The approach adopted in this study could eventually be extended to other muscles and patient populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2006.12.001DOI Listing

Publication Analysis

Top Keywords

gastrocnemius soleus
12
normal gait
8
functional electrical
8
electrical stimulation
8
stance phase
8
theoretical predictions
8
gastrocnemius
6
gait
5
soleus
5
exploration function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!