Steroidal hormones are constantly released into the environment by man-made and natural sources. The goal of this study was to examine the persistence and fate of 17beta-estradiol and testosterone, the two primary natural sex hormones. Incubation experiments were conducted under aerobic and anaerobic conditions using [4-(14)C]-radiolabeled 17beta-estradiol and testosterone. The results indicated that 6% of 17beta-estradiol and 63% of testosterone could be mineralized to (14)CO(2) in native soils under aerobic conditions. In native soils under anaerobic conditions, 2% of testosterone and no 17beta-estradiol was methanogenized to (14)CH(4). Essentially, no mineralization of either testosterone or 17beta-estradiol to (14)CO(2) occurred in autoclaved soils under aerobic or anaerobic condition. Results also indicated that 17beta-estradiol could be transformed to an unidentified polar compound through abiotic chemical processes; however, 17beta-estradiol was only oxidized to estrone via biological processes. The TLC results also indicated that testosterone was degraded, not by physical-chemical processes but by biological processes. Results also indicated that the assumed risks of estrogenic hormones in the environment might be over-estimated due to the soil's humic substances, which can immobilize majority of estrogenic hormones, and thereby reduce their bioavailability and toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2006.11.040DOI Listing

Publication Analysis

Top Keywords

17beta-estradiol testosterone
12
persistence fate
8
17beta-estradiol
8
fate 17beta-estradiol
8
aerobic anaerobic
8
anaerobic conditions
8
indicated 17beta-estradiol
8
native soils
8
soils aerobic
8
testosterone 17beta-estradiol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!