Antibodies (Abs) to the superantigenic determinant of HIV gp120 (gp120(SAg)) are potential protective agents against HIV infection. We report that the light chain subunits of Abs cloned from lupus patients using phage library methods bind and hydrolyze gp120(SAg) independent of the heavy chain. Unlike frequent gp120(SAg) recognition by intact Abs attributable to V(H) domain structural elements, the isolated light chains expressed this activity rarely. Four light chains capable of gp120(SAg) recognition were identified by fractionating phage displayed light chains using peptide probes containing gp120 residues 421-433, a gp120(SAg) component. Three light chains expressed non-covalent gp120(SAg) binding and one expressed gp120(SAg) hydrolyzing activity. The hydrolytic light chain was isolated by covalent phage fractionation using an electrophilic analog of residues 421-433. This light chain hydrolyzed a reporter gp120(SAg) substrate and full-length gp120. Other peptide substrates and proteins were hydrolyzed at lower rates or not at all. Consistent with the expected nucleophilic mechanism of hydrolysis, the light chain reacted selectively and covalently with the electrophilic gp120(SAg) peptide analog. The hydrolytic reaction entailed a fast initial step followed by a slower rate limiting step, suggesting rapid substrate acylation and slow deacylation. All four gp120(SAg)-recognizing light chains contained sequence diversifications relative to their germline gene counterparts. These observations indicate that in rare instances, the light chain subunit can bind and hydrolyze gp120(SAg) without the participation of the heavy chain. The pairing of such light chains with heavy chains capable of gp120(SAg) recognition represents a potential mechanism for generating protective Abs with enhanced HIV binding strength and anti-viral proteolytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2006.12.005 | DOI Listing |
Chemosphere
January 2025
Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium. Electronic address:
Mercury (Hg) is a globally significant pollutant, which is particularly concerning due to its ability to undergo long-range atmospheric transport and its bioaccumulation and biomagnification in marine ecosystems, even in remote regions like Antarctica. This study explores the biogeochemical cycling of Hg in the marine coastal environment of Terra Nova Bay (Antarctica) by determining the total content of mercury (THg) and its isotopic composition in fish (Trematomus bernacchii), bivalve molluscs (Adamussium colbecki) and sediment samples, collected in 1996-1998 and 2021. Significantly lower THg concentrations are found in the organisms sampled in 2021 compared to those sampled in 1996-1998, with a concurrent shift toward higher δHg (governed by mass-dependent isotope fractionation MDF) and lower ΔHg and ΔHg (governed by mass-independent isotope fractionation MIF) values.
View Article and Find Full Text PDFLangmuir
January 2025
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China.
The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the ABA triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the ABA triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the ABCA tetrablock copolymer.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
In recent years, heightened concern has emerged regarding the pervasive presence of microplastics in the environment, particularly in aquatic ecosystems. This concern has prompted extensive scientific inquiry into microplastics' ecological and physiological implications, including threats to biodiversity. The robust adsorption capacity of microplastic surfaces facilitates their widespread distribution throughout aquatic ecosystems, acting also as carriers of organic pollutants.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India.
The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.
View Article and Find Full Text PDFFront Neurol
January 2025
14th European Reference Network in Neuromuscular Disorders (EURO-NMD), Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.
Background: Charcot-Marie-Tooth disease (CMT), a slowly advancing hereditary nerve disorder, presents a significant challenge in the medical field. Effective drugs for treatment are lacking, and we struggle to find sensitive markers to track the disease's severity and progression. In this study, our objective was to investigate the levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), fibroblast growth factor 21 (FGF-21) and growth differentiation factor 15 (GDF-15) in individuals with CMT and to compare them to a control group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!