We compared the neutralization abilities of individual monoclonal antibodies (MAb) of two large panels reactive with L1 epitopes of HPV-11 or HPV-16. Binding titers were compared using both L1-only VLPs and L1/L2 pseudovirions. While the VLPs were antigenically similar to the pseudovirions, clear differences in the surface exposure of some epitopes were evident with the HPV-16 particles. To determine whether all antibody binding events are equivalent in their neutralizing effect on infectious HPV virions or pseudovirions, the binding and neutralization titers for individual MAbs were used to calculate the relative neutralization efficiency for each antibody. HPV neutralization was achieved by all MAbs capable of strong binding to either linear or conformation-sensitive epitopes on pseudovirus particles. Our data suggest, however, that some L1 epitopes may be more neutralization-sensitive than other surface epitopes, in that successful infection can be blocked by varying degrees of epitope saturation. Additionally, the effective neutralization of virions by several monovalent Fab fragments and single-chain variable fragments (scFv) demonstrates that viral neutralization does not require HPV particle aggregation or L1 crosslinking. Identification of capsid protein structures rich in neutralization-sensitive epitopes may aid in the development of improved recombinant vaccines capable of eliciting effective and long-term antibody-mediated protection against multiple HPV types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040078 | PMC |
http://dx.doi.org/10.1016/j.virol.2006.12.002 | DOI Listing |
Comput Biol Chem
January 2025
Virology and Vaccine Research and Development Program, Department of Science and Technology-Industrial Technology Development Institute, Taguig City, Metro Manila 1631, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig City, Metro Manila 1631, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Metro Manila 1000, Philippines. Electronic address:
Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA.
Human astroviruses (HAstVs) are a leading cause of viral childhood diarrhea that infects nearly every individual during their lifetime. Although human astroviruses are highly prevalent, no approved vaccine currently exists. Antibody responses appear to play an important role in protection from HAstV infection; however, knowledge about the neutralizing epitope landscape is lacking, as only three neutralizing antibody epitopes have previously been determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!