Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy.

Int J Exp Pathol

Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., México.

Published: December 2006

Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517393PMC
http://dx.doi.org/10.1111/j.1365-2613.2006.00504.xDOI Listing

Publication Analysis

Top Keywords

murine leprosy
20
expression cyclooxygenase-2
8
inducible nitric
8
nitric oxide
8
oxide synthase
8
lesions murine
8
participate formation
8
pro-inflammatory anti-inflammatory
8
environment predominates
8
anti-inflammatory environment
8

Similar Publications

Tolerogenic dendritic cells with professional antigen presentation via major histocompatibility complex molecules, co-stimulatory molecules (CD80/86), and interleukin 10 production have attracted significant attention as cellular therapies for autoimmune, allergic, and graft-versus-host diseases. In this study, we developed a cell culture dish equipped with polycation-porphyrin-conjugate-immobilized glass (PA-HP-G) to stimulate immature murine dendritic cell (iDCs). Upon irradiation with a red light at 635 nm toward the PA-HP-G surface, singlet oxygen was generated by the immobilized porphyrins on the PA-HP-G surface.

View Article and Find Full Text PDF

A conserved human CD4+ T cell subset recognizing the mycobacterial adjuvant, trehalose monomycolate.

J Clin Invest

December 2024

Department of Molecular Immunology, Research Institute for Microbial Diseas, Osaka University, Suita, Japan.

Mycobacterium tuberculosis causes human tuberculosis. As mycobacteria are protected by thick lipid cell wall, humans have developed immune responses against diverse mycobacterial lipids. Most of these immunostimulatory lipids are known as adjuvants acting through innate immune receptors, such as C-type lectin receptors.

View Article and Find Full Text PDF

Trans-nasal brain delivery of anti-TB drugs by methyl-β-cyclodextrin microparticles show efficient mycobacterial clearance from central nervous system.

J Control Release

December 2024

Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Central nervous system tuberculosis (CNS-TB) is the most severe extra-pulmonary manifestation of tuberculosis (TB), facing significant challenges due to the limited penetration of anti-TB drugs (ATDs) across the blood-brain barrier (BBB) and their insufficient concentrations at the site of infection. This study aimed to enhance the efficacy of ATDs by encapsulating them in methyl-β-cyclodextrin (M-β-CD) microparticles (ATD-MP) using spray drying, intended for intranasal delivery to manage CNS-TB. M-β-CD microparticles loaded with isoniazid (INH) and rifampicin (RIF) exhibited spherical shapes with slightly deflated surfaces and particle sizes of 6.

View Article and Find Full Text PDF

Bedaquiline Monotherapy for Multibacillary Leprosy.

N Engl J Med

December 2024

From the Research Division, Instituto Lauro de Souza Lima, Bauru (J.B., P.S.R.), and Fundação de Dermatologia Tropical e Venereologia Alfredo da Matta, Manaus (P.F.B.R.) - both in Brazil; the Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Laboratory Research Branch, Baton Rouge, LA (L.A., R.T.); Translational Medicine and Early Development Statistics (S.Y.), WAVE Team (Z.A., S.R.C., S.K., D.M., J.A.P., M.W.), Janssen Research and Development, San Diego, CA; Janssen Global Public Health, Janssen Research and Development, Titusville, NJ (N.B., R.D.A.); and Janssen Global Public Health, Janssen Pharmaceutica, Beerse, Belgium (E.E., N.L., B.R.).

Background: Standard multidrug therapy for leprosy may be associated with severe side effects, which add to the stigma and discrimination that affect persons with the disease. In addition, the threat posed by drug-resistant leprosy shows the need for alternative drug combinations and shorter, safer regimens of multidrug therapy.

Methods: In this open-label, proof-of-concept study conducted in Brazil, we assigned patients with previously untreated multibacillary leprosy to receive bedaquiline monotherapy for 8 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacterium marinum is a leading cause of non-tuberculous mycobacterial infections, notably fish tank granuloma, and is more resistant to treatments compared to other NTM bacteria.
  • Current treatment protocols for M. marinum are not well-established, and few studies have investigated how effective existing antibiotics are in living mammals.
  • The study introduced a noninvasive imaging method to track M. marinum infections in mice, revealing that a combination of specific antibiotics helped clear the infection, while also highlighting the role of immune responses in granuloma development similar to tuberculosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!