Fluorescent labels find wide application in immunoassays and immunosensors as well as in protein and DNA chips. However, the use of fluorescent labels in applications requiring high detection sensitivity is limited by fluorescence self-quenching observed when a relatively high number of fluorescent compounds is introduced in the recognition molecule. Here we describe a simple method that suppresses effectively fluorescence self-quenching observed when highly labeled antibodies are used as labels in immunoassays. This was achieved by treating the microtitration wells after the completion of the immunoassay with a glycerin solution followed by 15-min incubation of the emptied wells at 37 degrees C. The remedial action of this method on self-quenching was studied through a noncompetitive immunofluorometric assay for rabbit gamma-globulins employing a sheep anti-rabbit gamma-globulin antibody labeled with fluorescein at molar ratios ranging from 1.0 to 17.4. The glycerin/thermal treatment increased the fluorescence signal measured directly onto the solid surface by 9.2-117% for the antibodies with molar ratios of 1.0-17.4, compared with the values obtained prior to treatment. Furthermore, fluorescence self-quenching was completely removed for labeling ratios up to 14.0. The assay sensitivity was improved 2-4 times by the glycerin/thermal treatment when heavily fluoresceinated antibodies are used as labels (molar ratio >/=5.6). The proposed method resulted also in increased fluorescence signals when labels other than fluorescein were used and improved considerably the detection of protein spots on silicon dies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac061492mDOI Listing

Publication Analysis

Top Keywords

fluorescence self-quenching
16
fluorescent labels
8
self-quenching observed
8
antibodies labels
8
molar ratios
8
glycerin/thermal treatment
8
increased fluorescence
8
fluorescence
6
self-quenching
5
labels
5

Similar Publications

Heroin as a derivative of morphine contains the alkaloids and flavonoids with plenty of three to five aromatic rings. The latter is known as the main source of fluorescence emission after laser excitation. Here, laser induced fluorescence (LIF) spectroscopy at excitation line of 405 nm with the solvent densitometry method is introduced based on modified Beer-Lambert (MBL), for the rapid and reliable identification of street heroin samples.

View Article and Find Full Text PDF

Late diagnosis is one of the major obstacles for the treatment of breast cancer which can be overcome with a system offering sensitive imaging and selective therapeutic effect. In this study, we developed a "dark-bright" multifunctional drug delivery system bringing real-time imaging and non-invasive therapy together. Theranostic ability of the system was delivered by Verteporfin (VP), serving as a fluorescence probe and a photosensitizer.

View Article and Find Full Text PDF

Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn-triggered growth strategy without high temperature and pressure.

View Article and Find Full Text PDF

1Parkinson's disease (PD) involves the aggregation of the protein alpha-synuclein, a process promoted by interactions with intracellular membranes. To study this phenomenon in neurons for the first time, we developed a fluorescence lifetime imaging (FLIM) method using Förster resonance energy transfer and self-quenching reporters, analyzed with a custom-built FLIM microscope. This method offers insights into aggregate formation in PD and can be broadly applied to probe protein-membrane interactions in neurons.

View Article and Find Full Text PDF

Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!