Fibrillation potentials following spinal cord injury: improvement with neurotrophins and exercise.

Muscle Nerve

Department of Rehabilitation Medicine, Thomas Jefferson University, 132 S. 10th Street, 375 Main Building, Philadelphia, Pennsylvania 19107, USA.

Published: May 2007

Fibrillation potentials and positive sharp waves (spontaneous potentials) are the electrophysiological hallmark of denervated skeletal muscle, and their detection by intramuscular electromyography (EMG) is the clinical gold standard for diagnosing denervated skeletal muscle. Surprisingly, spontaneous potentials have been described following human and experimental spinal cord injury (SCI) in muscles innervated by spinal cord segments distal to the level of direct spinal injury. To determine whether electrophysiological abnormalities are improved by two therapeutic interventions for experimental SCI, neurotrophic factors and exercise training, we studied four representative hindlimb muscles in adult domestic short-hair cats following complete transection of the spinal cord at T11-T12. In untreated cats, electrophysiological abnormalities persisted unchanged for 12 weeks postinjury, the longest duration studied. In contrast, fibrillations and positive sharp waves largely resolved in animals that underwent weight-supported treadmill training or received grafts containing fibroblasts genetically modified to express brain-derived neurotrophic factor and neurotrophin-3. These findings suggest that neurotrophins and activity play an important role in the poorly understood phenomenon of fibrillations distal to SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.20738DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
fibrillation potentials
8
cord injury
8
positive sharp
8
sharp waves
8
spontaneous potentials
8
denervated skeletal
8
skeletal muscle
8
electrophysiological abnormalities
8
spinal
5

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.

Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Objectives: The population in the U.S., and across the world is aging rapidly which warrants an assessment of the safety of surgical approaches in elderly individuals to better risk stratify and inform surgeons' decision making for optimal patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!