Sperm morphology of cattle and domestic pigs.

Reprod Biol

Department of Bioegineering and Animal Breeding, University of Podlasie, ul. B. Prusa 14, 08-110 Siedlce, Poland.

Published: June 2007

Sperm morphology was evaluated (using Blom classification) in 44 ejaculates of 11 bulls and 44 ejaculates of 11 boars. Significant differences in sperm morphology were found between bulls and boars. In addition, the correlations between frequency of morphological changes and morphometrical traits of boar spermatozoa were demonstrated. More morphological anomalies of spermatozoa were recorded in ejaculates containing longer spermatozoa.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sperm morphology
12
morphology cattle
4
cattle domestic
4
domestic pigs
4
pigs sperm
4
morphology evaluated
4
evaluated blom
4
blom classification
4
classification ejaculates
4
ejaculates bulls
4

Similar Publications

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

Effect of Time-Lapse Incubation System on In Vitro Development of Alpaca Embryos.

Reprod Domest Anim

February 2025

Veterinary Embryology Laboratory, Professional School of Veterinary Medicine, Universidad Nacional de San Antonio Abad del Cusco, Sicuani-Cusco, Peru.

Currently, incubators with a time-lapse system are widely used for in vitro embryo production in several species, however, their effect on alpaca embryo development compared to conventional incubators remains unknown. The aim of this study was to compare early in vitro embryo development in alpacas using a time-lapse incubator system versus a conventional incubator. Ovaries were obtained from a slaughterhouse and 1048 cumulus-oocyte complexes (COCs) were collected and in vitro matured for 26 h in either a time-lapse system (n = 542) or a conventional incubator (n = 542).

View Article and Find Full Text PDF

Hormonal Regulation of Urokinase- and Tissue-Type Plasminogen Activator in Mouse Sertoli Cells.

Mol Reprod Dev

January 2025

Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.

A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.

View Article and Find Full Text PDF

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!